Daniel Soesanto, Igi Ardiyanto, Teguh Bharata Adji
{"title":"提高区块链存储效率的自适应收缩和碎片架构设计","authors":"Daniel Soesanto, Igi Ardiyanto, Teguh Bharata Adji","doi":"10.1049/2024/2280828","DOIUrl":null,"url":null,"abstract":"<div>\n <p>One of the problems in the blockchain is the formation of increasingly large data (big data) because each block must store all the transactions it makes. With the problem of the appearance of extensive data (big data), many studies aim to maintain the data in small amounts. This research combines a sorting data technique and a proper compression technique to obtain efficient data storage on the blockchain. The result of this research is a blockchain platform called Adaptive Shrink and Shard Blockchain (AS<sup>2</sup>BC), which conceptually and computationally can minimize the use of storage space in the blockchain up to 22 times smaller.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2280828","citationCount":"0","resultStr":"{\"title\":\"Adaptive Shrink and Shard Architecture Design for Blockchain Storage Efficiency\",\"authors\":\"Daniel Soesanto, Igi Ardiyanto, Teguh Bharata Adji\",\"doi\":\"10.1049/2024/2280828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>One of the problems in the blockchain is the formation of increasingly large data (big data) because each block must store all the transactions it makes. With the problem of the appearance of extensive data (big data), many studies aim to maintain the data in small amounts. This research combines a sorting data technique and a proper compression technique to obtain efficient data storage on the blockchain. The result of this research is a blockchain platform called Adaptive Shrink and Shard Blockchain (AS<sup>2</sup>BC), which conceptually and computationally can minimize the use of storage space in the blockchain up to 22 times smaller.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2280828\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/2280828\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/2280828","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Adaptive Shrink and Shard Architecture Design for Blockchain Storage Efficiency
One of the problems in the blockchain is the formation of increasingly large data (big data) because each block must store all the transactions it makes. With the problem of the appearance of extensive data (big data), many studies aim to maintain the data in small amounts. This research combines a sorting data technique and a proper compression technique to obtain efficient data storage on the blockchain. The result of this research is a blockchain platform called Adaptive Shrink and Shard Blockchain (AS2BC), which conceptually and computationally can minimize the use of storage space in the blockchain up to 22 times smaller.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.