全国森林火灾预防和扑救空间决策支持系统的概念设计

IF 2.3 Q2 REMOTE SENSING Applied Geomatics Pub Date : 2024-02-21 DOI:10.1007/s12518-024-00556-9
Abdullah Sukkar, Ahmet Ozgur Dogru, Ugur Alganci, Dursun Zafer Seker
{"title":"全国森林火灾预防和扑救空间决策支持系统的概念设计","authors":"Abdullah Sukkar,&nbsp;Ahmet Ozgur Dogru,&nbsp;Ugur Alganci,&nbsp;Dursun Zafer Seker","doi":"10.1007/s12518-024-00556-9","DOIUrl":null,"url":null,"abstract":"<div><p>Wildfires have become a growing global concern due to the environmental and economic damage they cause. Climate change is a primary cause of wildfires as it increases the frequency, extent, and severity of wildfires. In addition to climate change, human activities have become a major cause of wildfires, particularly in the Mediterranean region. Since wildfire is a very complicated environmental problem, effectively responding to and minimising the danger of a wildfire necessitates the integration of all available information into decision-making systems. The complexity of wildfires can have a negative impact on decision-making, particularly when decisions are temporally made under dynamic, uncertain, and contradictory conditions. Since the early 1990s, there has been a rise in the occurrence of “mega-fires” throughout Europe, which are characterised by wildfires that surpass the present firefighting capabilities. Controlling mega-fires exceeds the response capacity of the individual institutions as effective wildfire management requires extensive coordination of the institutions and all available resources at a local, regional, and national level. This cooperation necessitates the integration of advanced technologies with scientific knowledge, as well as the combination of various heterogeneous spatial and non-spatial data. GIS technology provides an efficient, expedited, and economical process of data collection and analysis. In the last decades, GIS-based decision support systems have been used to improve the efficiency of firefighting processes like planning, management, and decision-making. In this study, a conceptual framework of a GIS-based decision support system for wildfire prevention and fighting in Turkey was proposed. The presented conceptual design aims to improve the firefighting capacity by providing decision-oriented spatial information on wildfire risks and dangers timely through integrated functional tools efficiently.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":"16 2","pages":"347 - 363"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conceptual design of a nationwide spatial decision support system for forest fire prevention and fighting\",\"authors\":\"Abdullah Sukkar,&nbsp;Ahmet Ozgur Dogru,&nbsp;Ugur Alganci,&nbsp;Dursun Zafer Seker\",\"doi\":\"10.1007/s12518-024-00556-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wildfires have become a growing global concern due to the environmental and economic damage they cause. Climate change is a primary cause of wildfires as it increases the frequency, extent, and severity of wildfires. In addition to climate change, human activities have become a major cause of wildfires, particularly in the Mediterranean region. Since wildfire is a very complicated environmental problem, effectively responding to and minimising the danger of a wildfire necessitates the integration of all available information into decision-making systems. The complexity of wildfires can have a negative impact on decision-making, particularly when decisions are temporally made under dynamic, uncertain, and contradictory conditions. Since the early 1990s, there has been a rise in the occurrence of “mega-fires” throughout Europe, which are characterised by wildfires that surpass the present firefighting capabilities. Controlling mega-fires exceeds the response capacity of the individual institutions as effective wildfire management requires extensive coordination of the institutions and all available resources at a local, regional, and national level. This cooperation necessitates the integration of advanced technologies with scientific knowledge, as well as the combination of various heterogeneous spatial and non-spatial data. GIS technology provides an efficient, expedited, and economical process of data collection and analysis. In the last decades, GIS-based decision support systems have been used to improve the efficiency of firefighting processes like planning, management, and decision-making. In this study, a conceptual framework of a GIS-based decision support system for wildfire prevention and fighting in Turkey was proposed. The presented conceptual design aims to improve the firefighting capacity by providing decision-oriented spatial information on wildfire risks and dangers timely through integrated functional tools efficiently.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":\"16 2\",\"pages\":\"347 - 363\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-024-00556-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-024-00556-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

由于野火造成的环境和经济损失,野火已成为全球日益关注的问题。气候变化是导致野火的主要原因,因为它增加了野火的频率、范围和严重程度。除了气候变化,人类活动也成为野火的主要原因,尤其是在地中海地区。由于野火是一个非常复杂的环境问题,要有效应对野火并将其危害降至最低,就必须将所有可用信息整合到决策系统中。野火的复杂性会对决策产生负面影响,尤其是在动态、不确定和相互矛盾的条件下做出决策时。自 20 世纪 90 年代初以来,欧洲各地发生的 "特大火灾 "呈上升趋势,其特点是野火超过了目前的灭火能力。控制特大火灾超出了单个机构的应对能力,因为有效的野火管理需要在地方、地区和国家层面广泛协调各机构和所有可用资源。这种合作需要将先进技术与科学知识相结合,并将各种不同的空间和非空间数据结合起来。GIS 技术提供了一个高效、快捷和经济的数据收集和分析过程。在过去几十年中,基于 GIS 的决策支持系统已被用于提高规划、管理和决策等消防流程的效率。本研究提出了土耳其野火预防和扑救基于 GIS 的决策支持系统的概念框架。所提出的概念设计旨在通过有效的集成功能工具,及时提供以决策为导向的野火风险和危险空间信息,从而提高消防能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conceptual design of a nationwide spatial decision support system for forest fire prevention and fighting

Wildfires have become a growing global concern due to the environmental and economic damage they cause. Climate change is a primary cause of wildfires as it increases the frequency, extent, and severity of wildfires. In addition to climate change, human activities have become a major cause of wildfires, particularly in the Mediterranean region. Since wildfire is a very complicated environmental problem, effectively responding to and minimising the danger of a wildfire necessitates the integration of all available information into decision-making systems. The complexity of wildfires can have a negative impact on decision-making, particularly when decisions are temporally made under dynamic, uncertain, and contradictory conditions. Since the early 1990s, there has been a rise in the occurrence of “mega-fires” throughout Europe, which are characterised by wildfires that surpass the present firefighting capabilities. Controlling mega-fires exceeds the response capacity of the individual institutions as effective wildfire management requires extensive coordination of the institutions and all available resources at a local, regional, and national level. This cooperation necessitates the integration of advanced technologies with scientific knowledge, as well as the combination of various heterogeneous spatial and non-spatial data. GIS technology provides an efficient, expedited, and economical process of data collection and analysis. In the last decades, GIS-based decision support systems have been used to improve the efficiency of firefighting processes like planning, management, and decision-making. In this study, a conceptual framework of a GIS-based decision support system for wildfire prevention and fighting in Turkey was proposed. The presented conceptual design aims to improve the firefighting capacity by providing decision-oriented spatial information on wildfire risks and dangers timely through integrated functional tools efficiently.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Geomatics
Applied Geomatics REMOTE SENSING-
CiteScore
5.40
自引率
3.70%
发文量
61
期刊介绍: Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences. The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology. Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements
期刊最新文献
Interphase modeling of sedimentation rate using the GIS-based modified universal soil loss equation Circle-circle intersection. A universal method for solving typical surveying problems Drainage analysis of the Karanja River basin, Karnataka, India using Geo-informatics Predicting the spatiotemporal changes of an agriculturally vulnerable region of Bangladesh A new fuzzy location-based approach for fire station site selection in Tehran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1