液体光滑环形密封件在过渡状态下的动态性能

Seung-Hyeop Hyun, Adolfo Delgado
{"title":"液体光滑环形密封件在过渡状态下的动态性能","authors":"Seung-Hyeop Hyun, Adolfo Delgado","doi":"10.1115/1.4064805","DOIUrl":null,"url":null,"abstract":"\n This paper presents the experimental leakage and rotordynamic performance for a liquid smooth annular seal operating in the transition regime. The test conditions include pressure differentials up to 64 bars with 1~2 bar increments for 6 rotor speeds (2.5, 3.8, 5, 7.5, 8.8, and 10 krpm), as well as non-rotating rotor case under zero pre-swirl condition. The rotordynamic coefficients for all the test conditions are obtained by pseudo-random excitation of the seal at multiple subsynchronous frequencies. By considering the transition Reynolds number (1000 < Re < 3000) and the Taylor Number (Ta) vs Axial Reynolds Number (Rez), the variations in the direct stiffness coefficients (K) can used as an indicator of the flow regime transition boundaries. The direct stiffness K resulting from the Lomakin and hydrodynamic effects significantly drops until Rez reaches ~1500. For higher Rez, K increases mainly due to hydrodynamic effects. When K drops, the cross-coupled stiffness k, the direct damping C and the cross-coupled virtual mass m increase while the cross-coupled damping c and virtual mass M decrease. None of predictions based on either laminar or turbulent flow show the variations in rotordynamic coefficients obtained from experimental results. The leakage is not highly influenced by rotor speeds for low speed cases crossing laminar boundary as ?P increases, however, results for higher speeds in the superlaminar region show reduced leakage rates as rotor speed increases.","PeriodicalId":508252,"journal":{"name":"Journal of Engineering for Gas Turbines and Power","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Performance of Liquid Smooth Annular Seal Operating in the Transition Regime\",\"authors\":\"Seung-Hyeop Hyun, Adolfo Delgado\",\"doi\":\"10.1115/1.4064805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents the experimental leakage and rotordynamic performance for a liquid smooth annular seal operating in the transition regime. The test conditions include pressure differentials up to 64 bars with 1~2 bar increments for 6 rotor speeds (2.5, 3.8, 5, 7.5, 8.8, and 10 krpm), as well as non-rotating rotor case under zero pre-swirl condition. The rotordynamic coefficients for all the test conditions are obtained by pseudo-random excitation of the seal at multiple subsynchronous frequencies. By considering the transition Reynolds number (1000 < Re < 3000) and the Taylor Number (Ta) vs Axial Reynolds Number (Rez), the variations in the direct stiffness coefficients (K) can used as an indicator of the flow regime transition boundaries. The direct stiffness K resulting from the Lomakin and hydrodynamic effects significantly drops until Rez reaches ~1500. For higher Rez, K increases mainly due to hydrodynamic effects. When K drops, the cross-coupled stiffness k, the direct damping C and the cross-coupled virtual mass m increase while the cross-coupled damping c and virtual mass M decrease. None of predictions based on either laminar or turbulent flow show the variations in rotordynamic coefficients obtained from experimental results. The leakage is not highly influenced by rotor speeds for low speed cases crossing laminar boundary as ?P increases, however, results for higher speeds in the superlaminar region show reduced leakage rates as rotor speed increases.\",\"PeriodicalId\":508252,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了液体光滑环形密封在过渡状态下的试验泄漏和旋转动力性能。试验条件包括 6 种转子速度(2.5、3.8、5、7.5、8.8 和 10 krpm)下最高 64 巴的压差(增量为 1~2 巴),以及零预旋流条件下的非旋转转子情况。所有测试条件下的旋转动力系数都是通过在多个次同步频率下对密封件进行伪随机激励获得的。通过考虑过渡雷诺数(1000 < Re < 3000)和泰勒数(Ta)与轴向雷诺数(Rez)的关系,直接刚度系数(K)的变化可作为流态过渡边界的指标。洛马金效应和流体动力学效应导致的直接刚度 K 在 Rez 达到 ~1500 之前显著下降。Rez 越高,K 越大,这主要是由于流体动力学效应。当 K 下降时,交叉耦合刚度 k、直接阻尼 C 和交叉耦合虚拟质量 m 增加,而交叉耦合阻尼 c 和虚拟质量 M 减少。基于层流或湍流的预测均未显示出实验结果所获得的旋转动力系数的变化。对于穿越层流边界的低速情况,随着 P 的增加,泄漏受转子速度的影响不大,然而,超层流区域的高速结果显示,随着转子速度的增加,泄漏率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Performance of Liquid Smooth Annular Seal Operating in the Transition Regime
This paper presents the experimental leakage and rotordynamic performance for a liquid smooth annular seal operating in the transition regime. The test conditions include pressure differentials up to 64 bars with 1~2 bar increments for 6 rotor speeds (2.5, 3.8, 5, 7.5, 8.8, and 10 krpm), as well as non-rotating rotor case under zero pre-swirl condition. The rotordynamic coefficients for all the test conditions are obtained by pseudo-random excitation of the seal at multiple subsynchronous frequencies. By considering the transition Reynolds number (1000 < Re < 3000) and the Taylor Number (Ta) vs Axial Reynolds Number (Rez), the variations in the direct stiffness coefficients (K) can used as an indicator of the flow regime transition boundaries. The direct stiffness K resulting from the Lomakin and hydrodynamic effects significantly drops until Rez reaches ~1500. For higher Rez, K increases mainly due to hydrodynamic effects. When K drops, the cross-coupled stiffness k, the direct damping C and the cross-coupled virtual mass m increase while the cross-coupled damping c and virtual mass M decrease. None of predictions based on either laminar or turbulent flow show the variations in rotordynamic coefficients obtained from experimental results. The leakage is not highly influenced by rotor speeds for low speed cases crossing laminar boundary as ?P increases, however, results for higher speeds in the superlaminar region show reduced leakage rates as rotor speed increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Liquid Cooling of Fuel Cell Powered Aircraft: The Effect of Coolants on Thermal Management Development of 1400°C(2552°F) class Ceramic Matrix Composite Turbine Shroud and Demonstration Test with JAXA F7 Aircraft Engine Comparative Analysis of Total Pressure Measurement Techniques in Rotating Detonation Combustors Prediction of Soot in an RQL Burner Using a Semi-Detailed Jeta-1 Chemistry Nox Emissions Assessment of a Multi Jet Burner Operated with Premixed High Hydrogen Natural Gas Blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1