基于人工智能的胸部 CT COVID-19 肺炎负荷量化方法

Imaging Pub Date : 2024-02-20 DOI:10.1556/1647.2024.00167
C. Nardocci, Judit Simon, B. Budai
{"title":"基于人工智能的胸部 CT COVID-19 肺炎负荷量化方法","authors":"C. Nardocci, Judit Simon, B. Budai","doi":"10.1556/1647.2024.00167","DOIUrl":null,"url":null,"abstract":"During the coronavirus disease 2019 (COVID-19) pandemic, artificial intelligence (AI) based software on chest computed tomography (CT) imaging has proven to have a valuable role in accelerating diagnosis and screening. The proposed AI-based tools proved to be rapid and reproducible techniques to guide patient management and treatment protocols. Although no specific guidelines exist, CT-imaging and clinical features are used for patient staging. To shed light on the role of AI techniques that have been developed in fighting COVID-19, in this review, studies investigating the usage of commonly used AI models on chest CT imaging for disease quantification and prognostication are collected.","PeriodicalId":503851,"journal":{"name":"Imaging","volume":"128 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based quantification of COVID-19 pneumonia burden using chest CT\",\"authors\":\"C. Nardocci, Judit Simon, B. Budai\",\"doi\":\"10.1556/1647.2024.00167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the coronavirus disease 2019 (COVID-19) pandemic, artificial intelligence (AI) based software on chest computed tomography (CT) imaging has proven to have a valuable role in accelerating diagnosis and screening. The proposed AI-based tools proved to be rapid and reproducible techniques to guide patient management and treatment protocols. Although no specific guidelines exist, CT-imaging and clinical features are used for patient staging. To shed light on the role of AI techniques that have been developed in fighting COVID-19, in this review, studies investigating the usage of commonly used AI models on chest CT imaging for disease quantification and prognostication are collected.\",\"PeriodicalId\":503851,\"journal\":{\"name\":\"Imaging\",\"volume\":\"128 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/1647.2024.00167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1647.2024.00167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在冠状病毒病 2019(COVID-19)大流行期间,基于人工智能(AI)的胸部计算机断层扫描(CT)成像软件被证明在加速诊断和筛查方面发挥了重要作用。事实证明,所提出的基于人工智能的工具是指导患者管理和治疗方案的快速、可重复的技术。虽然没有具体的指南,但 CT 成像和临床特征被用于对患者进行分期。为了阐明在与 COVID-19 斗争中开发的人工智能技术的作用,本综述收集了有关在胸部 CT 成像中使用常用人工智能模型进行疾病量化和预后分析的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence-based quantification of COVID-19 pneumonia burden using chest CT
During the coronavirus disease 2019 (COVID-19) pandemic, artificial intelligence (AI) based software on chest computed tomography (CT) imaging has proven to have a valuable role in accelerating diagnosis and screening. The proposed AI-based tools proved to be rapid and reproducible techniques to guide patient management and treatment protocols. Although no specific guidelines exist, CT-imaging and clinical features are used for patient staging. To shed light on the role of AI techniques that have been developed in fighting COVID-19, in this review, studies investigating the usage of commonly used AI models on chest CT imaging for disease quantification and prognostication are collected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Testicular ultrasound measurement of testicular volume and epididymis diameters: Prediction of semen quality in a prospective study What patient positioning in chest X-ray is still acceptable? – An empirical study on thresholding quality metrics Pre-hospital ultrasonography screening for biliary disease in remote settings Evaluation of the cardiopulmonary size on slot-scanning full-spine radiographs Inter-reader reproducibility of a radiographic grading system for usual interstitial pneumonitis validates its use as a surrogate endpoint in clinical trials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1