Valeria Galli, Tyler J. Cuthbert, Chakaveh Ahmadizadeh, Carlo Menon
{"title":"人工汗液对可穿戴织物传感系统影响的初步调查","authors":"Valeria Galli, Tyler J. Cuthbert, Chakaveh Ahmadizadeh, Carlo Menon","doi":"10.36950/2024.2ciss086","DOIUrl":null,"url":null,"abstract":"Introduction\nTextile wearable systems for human movement monitoring are increasingly popular. However, few examples report on robustness to sweat, which is relevant for use in real life. Some reported the effect of artificial sweat like phosphate buffered saline (PBS; Lin et al., 2022) or simply moisture (Xu et al., 2020) on custom materials. We previously developed an all-textile wireless sensing platform with commercial conductive yarns and fabrics containing silver. There is no study on the effect of sweat on such materials, therefore we performed a preliminary study to account for moisture and potential oxydation of silver.\nMethods\nThe textile sensing system is resonating RLC circuit, where the sensing part is a capacitive parallel plate strain sensor (C) located on a joint (knee). All components are textile based and contain silver. As the capacitive sensor stretches, capacitance increases and the resonance of the circuit fres decreases. This information is transmitted wirelessly via inductive coupling (Galli et al., 2023). We sprayed 1 ml of 0.1 M PBS solution on the textile capacitive sensor to simulate sweating, and applied mechanical strain before (damp state) and after air drying (dry state). The unmodified sensor (before the addition of any PBS) was also used as a baseline measure. First, we applied fixed strain (10%) with a universal testing machine; then, we tested the response of the sensorized pants when bending the knee.\nResults The resonance frequency of the textile sensing (RLC) circuit in the damp state was much lower than the baseline (14.85 ± 0.11 MHz vs 22.70 ± 0.12 MHz) as expected from the higher dielectric constant of water that increases the baseline capacitance of the sensor. As for the change in Δfres upon 10% strain (Δfres = fres,baseline - fres,stretch), interestingly a larger change was observed for the damp configuration as compared to the baseline and dried (1.08 ± 0.08 vs 0.79 ± 0.06 vs 0.66 ± 0.03 MHz). A similar behaviour was observed in the test with pants, where the response for flexion was Δfres = 1.58 MHz for the damp sensor and Δfres = 1.28 MHz for the dried sensor.\nDiscussion/Conclusion\nThis preliminary investigation showed promising results in terms of robustness of our system to artificial sweat, as there was a measurable response both in the damp and dried configurations. Further tests with different sweat amounts and rate are needed to determine the full functioning range, e.g., how much sweat is tolerated.\nReferences\nGalli, V., Sailapu, S. K., Cuthbert, T. J., Ahmadizadeh, C., Hannigan, B. C., & Menon, C. (2023). Passive and wireless all-textile wearable sensor system. Advanced Science 10(22), Article 2206665. https://doi.org/10.1002/advs.202206665\nLin, R., Kim, H.-J., Achavananthadith, S., Xiong, Z., Lee, J. K. W., Kong, Y. L., & Ho, J. S. (2022). Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nature Communications, 13, Article 2190. https://doi.org/10.1038/s41467-022-29859-4\nXu, L., Liu, Z., Zhai, H., Chen, X., Sun, R., Lyu, S., Fan, Y., Yi, Y., Chen, Z., Jin, L., Zhang, J., Li, Y., & Ye, T. T. (2020). Moisture-resilient graphene-dyed wool fabric for strain sensing. ACS Applied Materials & Interfaces, 12(11), 13265–13274. https://doi.org/10.1021/acsami.9b20964","PeriodicalId":415194,"journal":{"name":"Current Issues in Sport Science (CISS)","volume":"47 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary investigation of the effect of artificial sweat on a wearable textile sensing system\",\"authors\":\"Valeria Galli, Tyler J. Cuthbert, Chakaveh Ahmadizadeh, Carlo Menon\",\"doi\":\"10.36950/2024.2ciss086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction\\nTextile wearable systems for human movement monitoring are increasingly popular. However, few examples report on robustness to sweat, which is relevant for use in real life. Some reported the effect of artificial sweat like phosphate buffered saline (PBS; Lin et al., 2022) or simply moisture (Xu et al., 2020) on custom materials. We previously developed an all-textile wireless sensing platform with commercial conductive yarns and fabrics containing silver. There is no study on the effect of sweat on such materials, therefore we performed a preliminary study to account for moisture and potential oxydation of silver.\\nMethods\\nThe textile sensing system is resonating RLC circuit, where the sensing part is a capacitive parallel plate strain sensor (C) located on a joint (knee). All components are textile based and contain silver. As the capacitive sensor stretches, capacitance increases and the resonance of the circuit fres decreases. This information is transmitted wirelessly via inductive coupling (Galli et al., 2023). We sprayed 1 ml of 0.1 M PBS solution on the textile capacitive sensor to simulate sweating, and applied mechanical strain before (damp state) and after air drying (dry state). The unmodified sensor (before the addition of any PBS) was also used as a baseline measure. First, we applied fixed strain (10%) with a universal testing machine; then, we tested the response of the sensorized pants when bending the knee.\\nResults The resonance frequency of the textile sensing (RLC) circuit in the damp state was much lower than the baseline (14.85 ± 0.11 MHz vs 22.70 ± 0.12 MHz) as expected from the higher dielectric constant of water that increases the baseline capacitance of the sensor. As for the change in Δfres upon 10% strain (Δfres = fres,baseline - fres,stretch), interestingly a larger change was observed for the damp configuration as compared to the baseline and dried (1.08 ± 0.08 vs 0.79 ± 0.06 vs 0.66 ± 0.03 MHz). A similar behaviour was observed in the test with pants, where the response for flexion was Δfres = 1.58 MHz for the damp sensor and Δfres = 1.28 MHz for the dried sensor.\\nDiscussion/Conclusion\\nThis preliminary investigation showed promising results in terms of robustness of our system to artificial sweat, as there was a measurable response both in the damp and dried configurations. Further tests with different sweat amounts and rate are needed to determine the full functioning range, e.g., how much sweat is tolerated.\\nReferences\\nGalli, V., Sailapu, S. K., Cuthbert, T. J., Ahmadizadeh, C., Hannigan, B. C., & Menon, C. (2023). Passive and wireless all-textile wearable sensor system. Advanced Science 10(22), Article 2206665. https://doi.org/10.1002/advs.202206665\\nLin, R., Kim, H.-J., Achavananthadith, S., Xiong, Z., Lee, J. K. W., Kong, Y. L., & Ho, J. S. (2022). Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nature Communications, 13, Article 2190. https://doi.org/10.1038/s41467-022-29859-4\\nXu, L., Liu, Z., Zhai, H., Chen, X., Sun, R., Lyu, S., Fan, Y., Yi, Y., Chen, Z., Jin, L., Zhang, J., Li, Y., & Ye, T. T. (2020). Moisture-resilient graphene-dyed wool fabric for strain sensing. ACS Applied Materials & Interfaces, 12(11), 13265–13274. https://doi.org/10.1021/acsami.9b20964\",\"PeriodicalId\":415194,\"journal\":{\"name\":\"Current Issues in Sport Science (CISS)\",\"volume\":\"47 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Sport Science (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36950/2024.2ciss086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Sport Science (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36950/2024.2ciss086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
导言用于人体运动监测的织物可穿戴系统越来越受欢迎。然而,很少有实例报告与现实生活中使用相关的汗液鲁棒性。有些报告了人工汗液(如磷酸盐缓冲盐水(PBS;Lin 等人,2022 年))或单纯湿气(Xu 等人,2020 年)对定制材料的影响。我们之前利用含银的商用导电纱线和织物开发了一种全织物无线传感平台。目前还没有关于汗液对此类材料影响的研究,因此我们进行了一项初步研究,以考虑湿度和银的潜在氧化作用。方法该纺织传感系统是共振 RLC 电路,其中传感部分是位于关节(膝关节)上的电容式平行板应变传感器(C)。所有组件均以纺织品为基础,并含有银。当电容式传感器拉伸时,电容增大,电路谐振减小。这些信息通过感应耦合进行无线传输(Galli 等人,2023 年)。我们在织物电容式传感器上喷洒了 1 毫升 0.1 M PBS 溶液以模拟出汗,并在风干前(潮湿状态)和风干后(干燥状态)施加机械应变。未修改的传感器(未添加任何 PBS 溶液)也被用作基线测量。首先,我们用万能试验机施加固定应变(10%);然后,测试传感裤子在膝盖弯曲时的响应。结果 纺织品传感(RLC)电路在潮湿状态下的共振频率比基线低得多(14.85 ± 0.11 MHz vs 22.70 ± 0.12 MHz),这是由于水的介电常数较高,增加了传感器的基线电容。至于 10% 应变时 Δfres 的变化(Δfres = fres,基线 - fres,拉伸),有趣的是,与基线和干燥相比,潮湿配置的变化更大(1.08 ± 0.08 vs 0.79 ± 0.06 vs 0.66 ± 0.03 MHz)。在裤子测试中也观察到类似的情况,潮湿传感器的屈曲响应为 Δfres = 1.58 MHz,干燥传感器的屈曲响应为 Δfres = 1.28 MHz。还需要对不同的出汗量和出汗率进行进一步测试,以确定全部功能范围,例如可承受的出汗量。无源无线全织物可穿戴传感器系统。https://doi.org/10.1002/advs.202206665Lin, R., Kim, H.-J., Achavananthadith, S., Xiong, Z., Lee, J. K. W., Kong, Y. L., & Ho, J. S. (2022).用于可穿戴无线系统的数字刺绣液态金属电子纺织品。https://doi.org/10.1038/s41467-022-29859-4Xu, L., Liu, Z., Zhai, H., Chen, X., Sun, R., Lyu, S., Fan, Y., Yi, Y., Chen, Z., Jin, L., Zhang, J., Li, Y., & Ye, T. T. (2020).用于应变传感的耐湿石墨烯染色羊毛织物。ACS Applied Materials & Interfaces, 12(11), 13265-13274. https://doi.org/10.1021/acsami.9b20964
Preliminary investigation of the effect of artificial sweat on a wearable textile sensing system
Introduction
Textile wearable systems for human movement monitoring are increasingly popular. However, few examples report on robustness to sweat, which is relevant for use in real life. Some reported the effect of artificial sweat like phosphate buffered saline (PBS; Lin et al., 2022) or simply moisture (Xu et al., 2020) on custom materials. We previously developed an all-textile wireless sensing platform with commercial conductive yarns and fabrics containing silver. There is no study on the effect of sweat on such materials, therefore we performed a preliminary study to account for moisture and potential oxydation of silver.
Methods
The textile sensing system is resonating RLC circuit, where the sensing part is a capacitive parallel plate strain sensor (C) located on a joint (knee). All components are textile based and contain silver. As the capacitive sensor stretches, capacitance increases and the resonance of the circuit fres decreases. This information is transmitted wirelessly via inductive coupling (Galli et al., 2023). We sprayed 1 ml of 0.1 M PBS solution on the textile capacitive sensor to simulate sweating, and applied mechanical strain before (damp state) and after air drying (dry state). The unmodified sensor (before the addition of any PBS) was also used as a baseline measure. First, we applied fixed strain (10%) with a universal testing machine; then, we tested the response of the sensorized pants when bending the knee.
Results The resonance frequency of the textile sensing (RLC) circuit in the damp state was much lower than the baseline (14.85 ± 0.11 MHz vs 22.70 ± 0.12 MHz) as expected from the higher dielectric constant of water that increases the baseline capacitance of the sensor. As for the change in Δfres upon 10% strain (Δfres = fres,baseline - fres,stretch), interestingly a larger change was observed for the damp configuration as compared to the baseline and dried (1.08 ± 0.08 vs 0.79 ± 0.06 vs 0.66 ± 0.03 MHz). A similar behaviour was observed in the test with pants, where the response for flexion was Δfres = 1.58 MHz for the damp sensor and Δfres = 1.28 MHz for the dried sensor.
Discussion/Conclusion
This preliminary investigation showed promising results in terms of robustness of our system to artificial sweat, as there was a measurable response both in the damp and dried configurations. Further tests with different sweat amounts and rate are needed to determine the full functioning range, e.g., how much sweat is tolerated.
References
Galli, V., Sailapu, S. K., Cuthbert, T. J., Ahmadizadeh, C., Hannigan, B. C., & Menon, C. (2023). Passive and wireless all-textile wearable sensor system. Advanced Science 10(22), Article 2206665. https://doi.org/10.1002/advs.202206665
Lin, R., Kim, H.-J., Achavananthadith, S., Xiong, Z., Lee, J. K. W., Kong, Y. L., & Ho, J. S. (2022). Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nature Communications, 13, Article 2190. https://doi.org/10.1038/s41467-022-29859-4
Xu, L., Liu, Z., Zhai, H., Chen, X., Sun, R., Lyu, S., Fan, Y., Yi, Y., Chen, Z., Jin, L., Zhang, J., Li, Y., & Ye, T. T. (2020). Moisture-resilient graphene-dyed wool fabric for strain sensing. ACS Applied Materials & Interfaces, 12(11), 13265–13274. https://doi.org/10.1021/acsami.9b20964