{"title":"基于数据立方体的存储优化,适用于资源受限的边缘计算","authors":"","doi":"10.1016/j.hcc.2024.100212","DOIUrl":null,"url":null,"abstract":"<div><div>In the evolving landscape of the digital era, edge computing emerges as an essential paradigm, especially critical for low-latency, real-time applications and Internet of Things (IoT) environments. Despite its advantages, edge computing faces severe limitations in storage capabilities and is fraught with reliability issues due to its resource-constrained nature and exposure to challenging conditions. To address these challenges, this work presents a tailored storage mechanism for edge computing, focusing on space efficiency and data reliability. Our method comprises three key steps: relation factorization, column clustering, and erasure encoding with compression. We successfully reduce the required storage space by deconstructing complex database tables and optimizing data organization within these sub-tables. We further add a layer of reliability through erasure encoding. Comprehensive experiments on TPC-H datasets substantiate our approach, demonstrating storage savings of up to 38.35% and time efficiency improvements by 3.96x in certain cases. Furthermore, our clustering technique shows a potential for additional storage reduction up to 40.41%.</div></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data cube-based storage optimization for resource-constrained edge computing\",\"authors\":\"\",\"doi\":\"10.1016/j.hcc.2024.100212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the evolving landscape of the digital era, edge computing emerges as an essential paradigm, especially critical for low-latency, real-time applications and Internet of Things (IoT) environments. Despite its advantages, edge computing faces severe limitations in storage capabilities and is fraught with reliability issues due to its resource-constrained nature and exposure to challenging conditions. To address these challenges, this work presents a tailored storage mechanism for edge computing, focusing on space efficiency and data reliability. Our method comprises three key steps: relation factorization, column clustering, and erasure encoding with compression. We successfully reduce the required storage space by deconstructing complex database tables and optimizing data organization within these sub-tables. We further add a layer of reliability through erasure encoding. Comprehensive experiments on TPC-H datasets substantiate our approach, demonstrating storage savings of up to 38.35% and time efficiency improvements by 3.96x in certain cases. Furthermore, our clustering technique shows a potential for additional storage reduction up to 40.41%.</div></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667295224000151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295224000151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Data cube-based storage optimization for resource-constrained edge computing
In the evolving landscape of the digital era, edge computing emerges as an essential paradigm, especially critical for low-latency, real-time applications and Internet of Things (IoT) environments. Despite its advantages, edge computing faces severe limitations in storage capabilities and is fraught with reliability issues due to its resource-constrained nature and exposure to challenging conditions. To address these challenges, this work presents a tailored storage mechanism for edge computing, focusing on space efficiency and data reliability. Our method comprises three key steps: relation factorization, column clustering, and erasure encoding with compression. We successfully reduce the required storage space by deconstructing complex database tables and optimizing data organization within these sub-tables. We further add a layer of reliability through erasure encoding. Comprehensive experiments on TPC-H datasets substantiate our approach, demonstrating storage savings of up to 38.35% and time efficiency improvements by 3.96x in certain cases. Furthermore, our clustering technique shows a potential for additional storage reduction up to 40.41%.