Wei Wei , Shan Zou , Weili Duan , Yaning Chen , Shuai Li , Takahiro Sayama , Jianyu Zhu
{"title":"全球变暖 1.5℃和 2℃情景下中亚极端降水对人口的影响增加","authors":"Wei Wei , Shan Zou , Weili Duan , Yaning Chen , Shuai Li , Takahiro Sayama , Jianyu Zhu","doi":"10.1016/j.geosus.2024.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>The increase in extreme precipitation (EP) may pose a serious threat to the health and safety of population in arid and semi-arid regions. The current research on the impact of EP on population in Central Asia (CA) is insufficient and there is an urgent need for a comprehensive assessment. Hence, we opted for precipitation and temperature data under two Shared Socioeconomic Pathways (SSP2–4.5 and SSP5–8.5) from ten Global Climate Models (GCMs), which were obtained from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6). By integrating population data in 2020 and 2050 (SSP2 and SSP5), we investigated the future changes in EP and population exposure in CA under 1.5 °C and 2 °C global warming scenarios (GWSs). Our analysis indicates that EP in CA is projected to increase with global warming. Under the SSP5–8.5, the maximum daily precipitation (Rx1day) exhibits an average response rate to global warming of 3.58 %/K (1.99–4.06 %/K). With rising temperatures, an increasing number of areas and populations in CA will be impacted by EP, especially in the Fergana valley. Approximately 25% of the population (land area) in CA is exposed to Rx1day with increases of more than 8.31% (9.32%) under 1.5 °C GWS and 14.18% (13.25%) under 2 °C GWS. Controlling temperature rise can be effective in reducing population exposures to EP. For instance, limiting the temperature increase to 1.5 °C instead of 2 °C results in a 2.79% (1.75%–4.59%) reduction in population exposure to Rx1day. Finally, we found that climate change serves as the predominant factor influencing the population exposure to EP, while the role of population redistribution, although relatively minor, should not be disregarded. Particularly for prolonged drought, the role of population redistribution manifests negatively.</p></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"5 3","pages":"Pages 343-356"},"PeriodicalIF":8.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666683924000142/pdfft?md5=8ddef2a461e981692fafc63c907bacb9&pid=1-s2.0-S2666683924000142-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Increased population exposures to extreme precipitation in Central Asia under 1.5 ℃ and 2 ℃ global warming scenarios\",\"authors\":\"Wei Wei , Shan Zou , Weili Duan , Yaning Chen , Shuai Li , Takahiro Sayama , Jianyu Zhu\",\"doi\":\"10.1016/j.geosus.2024.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increase in extreme precipitation (EP) may pose a serious threat to the health and safety of population in arid and semi-arid regions. The current research on the impact of EP on population in Central Asia (CA) is insufficient and there is an urgent need for a comprehensive assessment. Hence, we opted for precipitation and temperature data under two Shared Socioeconomic Pathways (SSP2–4.5 and SSP5–8.5) from ten Global Climate Models (GCMs), which were obtained from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6). By integrating population data in 2020 and 2050 (SSP2 and SSP5), we investigated the future changes in EP and population exposure in CA under 1.5 °C and 2 °C global warming scenarios (GWSs). Our analysis indicates that EP in CA is projected to increase with global warming. Under the SSP5–8.5, the maximum daily precipitation (Rx1day) exhibits an average response rate to global warming of 3.58 %/K (1.99–4.06 %/K). With rising temperatures, an increasing number of areas and populations in CA will be impacted by EP, especially in the Fergana valley. Approximately 25% of the population (land area) in CA is exposed to Rx1day with increases of more than 8.31% (9.32%) under 1.5 °C GWS and 14.18% (13.25%) under 2 °C GWS. Controlling temperature rise can be effective in reducing population exposures to EP. For instance, limiting the temperature increase to 1.5 °C instead of 2 °C results in a 2.79% (1.75%–4.59%) reduction in population exposure to Rx1day. Finally, we found that climate change serves as the predominant factor influencing the population exposure to EP, while the role of population redistribution, although relatively minor, should not be disregarded. Particularly for prolonged drought, the role of population redistribution manifests negatively.</p></div>\",\"PeriodicalId\":52374,\"journal\":{\"name\":\"Geography and Sustainability\",\"volume\":\"5 3\",\"pages\":\"Pages 343-356\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666683924000142/pdfft?md5=8ddef2a461e981692fafc63c907bacb9&pid=1-s2.0-S2666683924000142-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geography and Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666683924000142\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683924000142","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Increased population exposures to extreme precipitation in Central Asia under 1.5 ℃ and 2 ℃ global warming scenarios
The increase in extreme precipitation (EP) may pose a serious threat to the health and safety of population in arid and semi-arid regions. The current research on the impact of EP on population in Central Asia (CA) is insufficient and there is an urgent need for a comprehensive assessment. Hence, we opted for precipitation and temperature data under two Shared Socioeconomic Pathways (SSP2–4.5 and SSP5–8.5) from ten Global Climate Models (GCMs), which were obtained from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6). By integrating population data in 2020 and 2050 (SSP2 and SSP5), we investigated the future changes in EP and population exposure in CA under 1.5 °C and 2 °C global warming scenarios (GWSs). Our analysis indicates that EP in CA is projected to increase with global warming. Under the SSP5–8.5, the maximum daily precipitation (Rx1day) exhibits an average response rate to global warming of 3.58 %/K (1.99–4.06 %/K). With rising temperatures, an increasing number of areas and populations in CA will be impacted by EP, especially in the Fergana valley. Approximately 25% of the population (land area) in CA is exposed to Rx1day with increases of more than 8.31% (9.32%) under 1.5 °C GWS and 14.18% (13.25%) under 2 °C GWS. Controlling temperature rise can be effective in reducing population exposures to EP. For instance, limiting the temperature increase to 1.5 °C instead of 2 °C results in a 2.79% (1.75%–4.59%) reduction in population exposure to Rx1day. Finally, we found that climate change serves as the predominant factor influencing the population exposure to EP, while the role of population redistribution, although relatively minor, should not be disregarded. Particularly for prolonged drought, the role of population redistribution manifests negatively.
期刊介绍:
Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues.
Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes:
Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations;
Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability;
Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing;
Sustainable Development: Theory, practice and critical challenges in sustainable development.