A. R. Permanasari, Rony Pasonang Sihombing, F. Yulistiani, Tifa Paramita, Andin Faranitha Tsamarah, Euglina Meydillahaq, Wahyu Wibisono
{"title":"浸渍法合成铁沸石催化剂及其在葡萄糖异构化中的催化性能","authors":"A. R. Permanasari, Rony Pasonang Sihombing, F. Yulistiani, Tifa Paramita, Andin Faranitha Tsamarah, Euglina Meydillahaq, Wahyu Wibisono","doi":"10.4028/p-7wyrnb","DOIUrl":null,"url":null,"abstract":"A modified natural zeolite will be used as a catalyst in the isomerization process of glucose to fructose. It is modified by inserting Fe into its pores with the impregnation method so that the active site of the catalyst is formed as part of the isomerization process. This study aimed to make a catalyst from Fe-impregnated natural zeolite and determine its catalytic performance under various pH, temperature, and isomerization time conditions. The zeolite was activated using 6M H2SO4 and 0.5M KMnO4. The zeolite impregnation process was carried out using 1% (%w/v) FeCl3.6H2O solution with a ratio of (1:8) and continued with calcination at 500°C for 4 hours. The Fe-zeolite catalyst was characterized to determine the degree of crystallinity and crystal form, functional groups of its constituent compounds, and surface area. The isomerization process was carried out as a substrate of 10% glucose solution and 1 g of Fe-zeolite catalyst at various temperatures of 40, 50, and 60°C; pH 5, 7, and 9; a sampling time of every 15 minutes for 1 hour. The best fructose yield from the isomerization process was at a reaction temperature of 60°C, pH 5, and 45 min with a yield of 0.837%. It concluded that the Fe-Zeolite catalyst did not give a significant effect on the glucose isomerization process. It is expected that other researchers conduct similar research with different types of metal impregnated to give better results on the glucose isomerization process.","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":"2 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Synthesis of Fe-Zeolite Catalyst by Impregnation Process and its Catalytic Performance in Glucose Isomerization\",\"authors\":\"A. R. Permanasari, Rony Pasonang Sihombing, F. Yulistiani, Tifa Paramita, Andin Faranitha Tsamarah, Euglina Meydillahaq, Wahyu Wibisono\",\"doi\":\"10.4028/p-7wyrnb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modified natural zeolite will be used as a catalyst in the isomerization process of glucose to fructose. It is modified by inserting Fe into its pores with the impregnation method so that the active site of the catalyst is formed as part of the isomerization process. This study aimed to make a catalyst from Fe-impregnated natural zeolite and determine its catalytic performance under various pH, temperature, and isomerization time conditions. The zeolite was activated using 6M H2SO4 and 0.5M KMnO4. The zeolite impregnation process was carried out using 1% (%w/v) FeCl3.6H2O solution with a ratio of (1:8) and continued with calcination at 500°C for 4 hours. The Fe-zeolite catalyst was characterized to determine the degree of crystallinity and crystal form, functional groups of its constituent compounds, and surface area. The isomerization process was carried out as a substrate of 10% glucose solution and 1 g of Fe-zeolite catalyst at various temperatures of 40, 50, and 60°C; pH 5, 7, and 9; a sampling time of every 15 minutes for 1 hour. The best fructose yield from the isomerization process was at a reaction temperature of 60°C, pH 5, and 45 min with a yield of 0.837%. It concluded that the Fe-Zeolite catalyst did not give a significant effect on the glucose isomerization process. It is expected that other researchers conduct similar research with different types of metal impregnated to give better results on the glucose isomerization process.\",\"PeriodicalId\":7271,\"journal\":{\"name\":\"Advanced Materials Research\",\"volume\":\"2 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-7wyrnb\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-7wyrnb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Synthesis of Fe-Zeolite Catalyst by Impregnation Process and its Catalytic Performance in Glucose Isomerization
A modified natural zeolite will be used as a catalyst in the isomerization process of glucose to fructose. It is modified by inserting Fe into its pores with the impregnation method so that the active site of the catalyst is formed as part of the isomerization process. This study aimed to make a catalyst from Fe-impregnated natural zeolite and determine its catalytic performance under various pH, temperature, and isomerization time conditions. The zeolite was activated using 6M H2SO4 and 0.5M KMnO4. The zeolite impregnation process was carried out using 1% (%w/v) FeCl3.6H2O solution with a ratio of (1:8) and continued with calcination at 500°C for 4 hours. The Fe-zeolite catalyst was characterized to determine the degree of crystallinity and crystal form, functional groups of its constituent compounds, and surface area. The isomerization process was carried out as a substrate of 10% glucose solution and 1 g of Fe-zeolite catalyst at various temperatures of 40, 50, and 60°C; pH 5, 7, and 9; a sampling time of every 15 minutes for 1 hour. The best fructose yield from the isomerization process was at a reaction temperature of 60°C, pH 5, and 45 min with a yield of 0.837%. It concluded that the Fe-Zeolite catalyst did not give a significant effect on the glucose isomerization process. It is expected that other researchers conduct similar research with different types of metal impregnated to give better results on the glucose isomerization process.