{"title":"利用数据增强改进道路交通速度预测:基于深度生成模型的方法","authors":"Redouane Benabdallah Benarmas, Kadda Beghdad Bey","doi":"10.1007/s40745-023-00508-x","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning prediction models have emerged as the most widely used for the development of intelligent transportation systems (ITS), and their success is strongly reliant on the volume and quality of training data. However, traffic datasets are often small due to the limitations of the resources used to collect and store traffic flow data. Data Augmentation (DA) is a key method to improve the amount of the training dataset before applying a prediction model. In this paper, we demonstrate the effectiveness of data augmentation for predicting traffic speed by using a Deep Generative Model-based approach (DGM). We empirically evaluate the ability of time series-appropriate architectures to improve traffic prediction over a Train on Synthetic Test on Real(TSTR) process. A Time Series-based Generative Adversarial Network model is used to transform an original road traffic dataset into a synthetic dataset to improve traffic prediction. Experiments were carried out using the 6th Beijing and PeMS datasets to show that the transformation improves the prediction model’s accuracy using both parametric and non-parametric methods. Original datasets are compared with the generated ones using statistical analysis methods to measure the fidelity and behavior of the produced data.\n</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Road Traffic Speed Prediction Using Data Augmentation: A Deep Generative Models-based Approach\",\"authors\":\"Redouane Benabdallah Benarmas, Kadda Beghdad Bey\",\"doi\":\"10.1007/s40745-023-00508-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep learning prediction models have emerged as the most widely used for the development of intelligent transportation systems (ITS), and their success is strongly reliant on the volume and quality of training data. However, traffic datasets are often small due to the limitations of the resources used to collect and store traffic flow data. Data Augmentation (DA) is a key method to improve the amount of the training dataset before applying a prediction model. In this paper, we demonstrate the effectiveness of data augmentation for predicting traffic speed by using a Deep Generative Model-based approach (DGM). We empirically evaluate the ability of time series-appropriate architectures to improve traffic prediction over a Train on Synthetic Test on Real(TSTR) process. A Time Series-based Generative Adversarial Network model is used to transform an original road traffic dataset into a synthetic dataset to improve traffic prediction. Experiments were carried out using the 6th Beijing and PeMS datasets to show that the transformation improves the prediction model’s accuracy using both parametric and non-parametric methods. Original datasets are compared with the generated ones using statistical analysis methods to measure the fidelity and behavior of the produced data.\\n</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-023-00508-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00508-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
Improving Road Traffic Speed Prediction Using Data Augmentation: A Deep Generative Models-based Approach
Deep learning prediction models have emerged as the most widely used for the development of intelligent transportation systems (ITS), and their success is strongly reliant on the volume and quality of training data. However, traffic datasets are often small due to the limitations of the resources used to collect and store traffic flow data. Data Augmentation (DA) is a key method to improve the amount of the training dataset before applying a prediction model. In this paper, we demonstrate the effectiveness of data augmentation for predicting traffic speed by using a Deep Generative Model-based approach (DGM). We empirically evaluate the ability of time series-appropriate architectures to improve traffic prediction over a Train on Synthetic Test on Real(TSTR) process. A Time Series-based Generative Adversarial Network model is used to transform an original road traffic dataset into a synthetic dataset to improve traffic prediction. Experiments were carried out using the 6th Beijing and PeMS datasets to show that the transformation improves the prediction model’s accuracy using both parametric and non-parametric methods. Original datasets are compared with the generated ones using statistical analysis methods to measure the fidelity and behavior of the produced data.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.