T. Hodson, K. Doore, Terry A. Kenney, Thomas M. Over, Muluken B. Yeheyis
{"title":"Ratingcurve:用于拟合溪流等级曲线的 Python 软件包","authors":"T. Hodson, K. Doore, Terry A. Kenney, Thomas M. Over, Muluken B. Yeheyis","doi":"10.3390/hydrology11020014","DOIUrl":null,"url":null,"abstract":"Streamflow is one of the most important variables in hydrology, but it is difficult to measure continuously. As a result, nearly all streamflow time series are estimated from rating curves that define a mathematical relationship between streamflow and some easy-to-measure proxy like water surface elevation (stage). Despite the existence of automated methods, most rating curves are still fit manually, which can be time-consuming and subjective. Although several automated methods exist, they vary greatly in performance because of the non-convex nature of the problem. In this work, we develop a parameterization of the segmented power law that works reliably with minimal data, which could serve operationally or as a benchmark for evaluating other methods. The model, along with test data and tutorials, is available as an open-source Python package called ratingcurve. The implementation uses a modern probabilistic machine-learning framework, which is relatively easy to modify so that others can improve upon it.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ratingcurve: A Python Package for Fitting Streamflow Rating Curves\",\"authors\":\"T. Hodson, K. Doore, Terry A. Kenney, Thomas M. Over, Muluken B. Yeheyis\",\"doi\":\"10.3390/hydrology11020014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Streamflow is one of the most important variables in hydrology, but it is difficult to measure continuously. As a result, nearly all streamflow time series are estimated from rating curves that define a mathematical relationship between streamflow and some easy-to-measure proxy like water surface elevation (stage). Despite the existence of automated methods, most rating curves are still fit manually, which can be time-consuming and subjective. Although several automated methods exist, they vary greatly in performance because of the non-convex nature of the problem. In this work, we develop a parameterization of the segmented power law that works reliably with minimal data, which could serve operationally or as a benchmark for evaluating other methods. The model, along with test data and tutorials, is available as an open-source Python package called ratingcurve. The implementation uses a modern probabilistic machine-learning framework, which is relatively easy to modify so that others can improve upon it.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology11020014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology11020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Ratingcurve: A Python Package for Fitting Streamflow Rating Curves
Streamflow is one of the most important variables in hydrology, but it is difficult to measure continuously. As a result, nearly all streamflow time series are estimated from rating curves that define a mathematical relationship between streamflow and some easy-to-measure proxy like water surface elevation (stage). Despite the existence of automated methods, most rating curves are still fit manually, which can be time-consuming and subjective. Although several automated methods exist, they vary greatly in performance because of the non-convex nature of the problem. In this work, we develop a parameterization of the segmented power law that works reliably with minimal data, which could serve operationally or as a benchmark for evaluating other methods. The model, along with test data and tutorials, is available as an open-source Python package called ratingcurve. The implementation uses a modern probabilistic machine-learning framework, which is relatively easy to modify so that others can improve upon it.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.