液化气再气化热力循环与机械能发电

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY Journal of Chemistry and Technologies Pub Date : 2024-01-26 DOI:10.15421/jchemtech.v31i4.294929
Г.К. Лавренченко, О.Г. Слинько, Олександр М. Шумило, Артем С. Бойчук, Сергій В. Козловський, В.М. Галкін
{"title":"液化气再气化热力循环与机械能发电","authors":"Г.К. Лавренченко, О.Г. Слинько, Олександр М. Шумило, Артем С. Бойчук, Сергій В. Козловський, В.М. Галкін","doi":"10.15421/jchemtech.v31i4.294929","DOIUrl":null,"url":null,"abstract":"Перевезення, зберігання й використання зріджених газів зараз займають значну частку у світовому газовому господарстві й зберігають тенденцію до подальшого збільшення. Для економічно виправданого морського рефрижераторного перевезення гази в терміналах відвантаження скраплюються. Будучи доставленими до місця споживання для можливості подальшого використання вони перетворюються у звичайний газ низького тиску – регазифікуються. Зараз цей процес здійснюється у звичайних теплообмінних апаратах, що обігріваються природними джерелами теплоти або попередньо спеціально нагріваємими теплоносіями. Зріджені гази подібно стиснутій механічній пружині містять велику кількість потенційної енергії, накопиченої при скрапленні. У використовуваному зараз технологічному процесі регазифікації ця енергія не використовується. У роботі пропонується термодинамічний цикл регазифікації зріджених газів, у якому отримується механічна енергії. Використовуючи гідродинамічний метод перетворення рідини в насичену пару, розглянутий нами раніше, і ізохорний процес її перегріву в пропонуємому термодинамічному циклі регазифікації, пара багаторазово ізохорно перегрівається та ізоентропно розширюється в турбіні. У сукупності це дозволяє одержувати багато механічної роботи. Враховуючи низьку температуру рефрижераторного перевезення зріджених газів, у роботі розглянуто варіант використання комбінованого гарячого джерела теплоти: спочатку пара нагрівається за рахунок теплоти навколишнього середовища, а потім перегрівається до більш високої температури спеціально нагріваємою водою.\nВиконані теплові розрахунки пропонуємого термодинамічного циклу регазифікації ЗПГ (метану), який перевозиться при температурі мінус 161.28 °С і етилену – мінус 101.77 °С. Розрахунки, які виконані для метану, показали, що використання пропонуємого методу при його регазифікації на одному з найбільших в Європі регазифікаційних терміналі «Barcelona», продуктивність якого 17.1 млрд. нм3/рік, дозволить одержувати потужність гіпотетичної паротурбінної установки 262 737.90 кВт. Отже, річне виробництво енергії складе 2 295 278 302 кВт∙г. Для виробництва такої кількості електроенергії потрібно 573 820 тонн палива за умови, що питома витрата палива використовуємим дизель-генератором складає 0.25 кг/(кВт∙г).","PeriodicalId":41282,"journal":{"name":"Journal of Chemistry and Technologies","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ТЕРМОДИНАМІЧНИЙ ЦИКЛ РЕГАЗИФІКАЦИИ ЗРІДЖЕНИХ ГАЗІВ З ОДЕРЖАННЯМ МЕХАНІЧНОЇ ЕНЕРГІЇ\",\"authors\":\"Г.К. Лавренченко, О.Г. Слинько, Олександр М. Шумило, Артем С. Бойчук, Сергій В. Козловський, В.М. Галкін\",\"doi\":\"10.15421/jchemtech.v31i4.294929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Перевезення, зберігання й використання зріджених газів зараз займають значну частку у світовому газовому господарстві й зберігають тенденцію до подальшого збільшення. Для економічно виправданого морського рефрижераторного перевезення гази в терміналах відвантаження скраплюються. Будучи доставленими до місця споживання для можливості подальшого використання вони перетворюються у звичайний газ низького тиску – регазифікуються. Зараз цей процес здійснюється у звичайних теплообмінних апаратах, що обігріваються природними джерелами теплоти або попередньо спеціально нагріваємими теплоносіями. Зріджені гази подібно стиснутій механічній пружині містять велику кількість потенційної енергії, накопиченої при скрапленні. У використовуваному зараз технологічному процесі регазифікації ця енергія не використовується. У роботі пропонується термодинамічний цикл регазифікації зріджених газів, у якому отримується механічна енергії. Використовуючи гідродинамічний метод перетворення рідини в насичену пару, розглянутий нами раніше, і ізохорний процес її перегріву в пропонуємому термодинамічному циклі регазифікації, пара багаторазово ізохорно перегрівається та ізоентропно розширюється в турбіні. У сукупності це дозволяє одержувати багато механічної роботи. Враховуючи низьку температуру рефрижераторного перевезення зріджених газів, у роботі розглянуто варіант використання комбінованого гарячого джерела теплоти: спочатку пара нагрівається за рахунок теплоти навколишнього середовища, а потім перегрівається до більш високої температури спеціально нагріваємою водою.\\nВиконані теплові розрахунки пропонуємого термодинамічного циклу регазифікації ЗПГ (метану), який перевозиться при температурі мінус 161.28 °С і етилену – мінус 101.77 °С. Розрахунки, які виконані для метану, показали, що використання пропонуємого методу при його регазифікації на одному з найбільших в Європі регазифікаційних терміналі «Barcelona», продуктивність якого 17.1 млрд. нм3/рік, дозволить одержувати потужність гіпотетичної паротурбінної установки 262 737.90 кВт. Отже, річне виробництво енергії складе 2 295 278 302 кВт∙г. Для виробництва такої кількості електроенергії потрібно 573 820 тонн палива за умови, що питома витрата палива використовуємим дизель-генератором складає 0.25 кг/(кВт∙г).\",\"PeriodicalId\":41282,\"journal\":{\"name\":\"Journal of Chemistry and Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemistry and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/jchemtech.v31i4.294929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemistry and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/jchemtech.v31i4.294929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

液化气的运输、储存和使用目前在全球天然气工业中占有很大份额,并将进一步增长。为了实现经济可行的海运冷藏运输,液化气在海运码头进行液化。一旦运送到消费点供进一步使用,它们就会被转化为传统的低压气体--再气化。目前,这一过程是在由自然热源或预热冷却剂加热的传统热交换器中进行的。液化气就像压缩的机械弹簧,在液化过程中积聚了大量的势能。目前使用的再气化工艺并未利用这些能量。本文提出了一种可获得机械能的液化气体热力学再气化循环。利用前面讨论过的将液体转化为饱和蒸汽的流体力学方法,以及所建议的热力学再气化循环中的等时过热过程,蒸汽在涡轮机中反复等时过热和等熵膨胀。这样就产生了大量的机械功。考虑到冷藏运输液化气体的温度较低,本文考虑了使用联合热热源的方案:首先用环境热量加热蒸汽,然后用专门加热的水将蒸汽过热到更高温度。对甲烷进行的计算表明,在欧洲最大的再气化终端之一--巴塞罗那(年处理能力为 171 亿 nm3)--采用建议的方法对甲烷进行再气化,可获得 262 737.90 千瓦的假定蒸汽轮机功率。因此,年发电量将达到 2,295,278,302 千瓦时。假设所用柴油发电机的具体燃料消耗量为 0.25 千克/(千瓦时),则这一发电量将需要 573 820 吨燃料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ТЕРМОДИНАМІЧНИЙ ЦИКЛ РЕГАЗИФІКАЦИИ ЗРІДЖЕНИХ ГАЗІВ З ОДЕРЖАННЯМ МЕХАНІЧНОЇ ЕНЕРГІЇ
Перевезення, зберігання й використання зріджених газів зараз займають значну частку у світовому газовому господарстві й зберігають тенденцію до подальшого збільшення. Для економічно виправданого морського рефрижераторного перевезення гази в терміналах відвантаження скраплюються. Будучи доставленими до місця споживання для можливості подальшого використання вони перетворюються у звичайний газ низького тиску – регазифікуються. Зараз цей процес здійснюється у звичайних теплообмінних апаратах, що обігріваються природними джерелами теплоти або попередньо спеціально нагріваємими теплоносіями. Зріджені гази подібно стиснутій механічній пружині містять велику кількість потенційної енергії, накопиченої при скрапленні. У використовуваному зараз технологічному процесі регазифікації ця енергія не використовується. У роботі пропонується термодинамічний цикл регазифікації зріджених газів, у якому отримується механічна енергії. Використовуючи гідродинамічний метод перетворення рідини в насичену пару, розглянутий нами раніше, і ізохорний процес її перегріву в пропонуємому термодинамічному циклі регазифікації, пара багаторазово ізохорно перегрівається та ізоентропно розширюється в турбіні. У сукупності це дозволяє одержувати багато механічної роботи. Враховуючи низьку температуру рефрижераторного перевезення зріджених газів, у роботі розглянуто варіант використання комбінованого гарячого джерела теплоти: спочатку пара нагрівається за рахунок теплоти навколишнього середовища, а потім перегрівається до більш високої температури спеціально нагріваємою водою. Виконані теплові розрахунки пропонуємого термодинамічного циклу регазифікації ЗПГ (метану), який перевозиться при температурі мінус 161.28 °С і етилену – мінус 101.77 °С. Розрахунки, які виконані для метану, показали, що використання пропонуємого методу при його регазифікації на одному з найбільших в Європі регазифікаційних терміналі «Barcelona», продуктивність якого 17.1 млрд. нм3/рік, дозволить одержувати потужність гіпотетичної паротурбінної установки 262 737.90 кВт. Отже, річне виробництво енергії складе 2 295 278 302 кВт∙г. Для виробництва такої кількості електроенергії потрібно 573 820 тонн палива за умови, що питома витрата палива використовуємим дизель-генератором складає 0.25 кг/(кВт∙г).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemistry and Technologies
Journal of Chemistry and Technologies CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
0.80
自引率
40.00%
发文量
39
期刊最新文献
ОЦІНКА ХЕМОТАКСОНОМІЧНОГО ЗНАЧЕННЯ ФІТОХІМІЧНОЇ ГЕТЕРОГЕННОСТІ СУЦВІТЬ РОДУ SORBUS ВПЛИВ ЕЛЕКТРОННО-КАТАЛІЗУ НА ВИКИДИ В НАВКОЛИШНЄ СЕРЕДОВИЩЕ ПІД ЧАС СПАЛЮВАННЯ ТВЕРДОГО ПАЛИВА АНТИБАКТЕРІАЛЬНІ ВЛАСТИВОСТІ КЕРАМІЧНИХ МЕМБРАН З СЕЛЕКТИВНИМ ШАРОМ НА ОСНОВІ TiO2 УДОСКОНАЛЕННЯ ТЕРМОДИНАМІЧНОГО ЦИКЛУ ПАРОТУРБІННИХ УСТАНОВОК ТЕПЛОВИХ ЕЛЕКТРОСТАНЦІЙ ВПЛИВ МОЛОЧНОЇ СИРОВАТКИ ТА СУБЛІМОВАНОЇ ГРУШІ НА БІОЛОГІЧНУ ЦІННІСТЬ СИРКОВИХ ПАСТ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1