{"title":"利用数据挖掘分析远程教育中同步、异步和混合课程的学生表现","authors":"Serdar Kirişoğlu, Mehmet Yildirim","doi":"10.29130/dubited.1067122","DOIUrl":null,"url":null,"abstract":"Günümüzde üniversite öğrencilerinin eğitime ve eğitim materyallerine internetten erişim oranları oldukça artmıştır. Eğitimde internetin kullanılması ve ders materyallerine erişimin artmasına bağlı olarak analiz edilebilecek veri setinde artış meydana gelmiştir. Bu veri setlerinden bir tanesi de (planlı veya acilen) uzaktan eğitim sürecine geçen üniversitelerin, uzaktan eğitim sistemlerinde biriken ödev, sınav, proje, performans, devam notları ve benzeridir. Yeni Korona Virüs (Covid-19) pandemisinde Yüksek Öğretim Kurumu’nun (YÖK) tavsiyesi ile üniversiteler eğitimlerine uzaktan Asenkron, Senkron ve Hibrit yöntemlerini kullanarak devam etmiş, hatta sınavları uzaktan eğitim sisteminde yapmak zorunda kalmışlardır. Bu araştırmada, Kayseri Üniversitesinin Uzaktan Eğitim Uygulama ve Araştırma Merkezi (KAYUZEM) sisteminden alınmış veriler kullanılmıştır. Araştırma kapsamında 8319 işlenmiş veri bulunmaktadır. Bu veriler üzerinde Veri Madenciliği (VM) alanında kullanılan RapidMiner programının otomatik modelleme özelliği kullanılarak varsayılan algoritmalarla geleceğe yönelik tahminleme işlemi yapılmıştır. Varsayılan algoritmalar arasından en iyi sonucu veren Derin Öğrenme, Naive Bayes, Gradient Boosted Trees, Lojistik Regresyon kullanılmış ve bu otomatik modelleme de yer almayan k-En Yakın Komşu (k-NN) algoritması da çalışmaya dahil edilmiştir. Bu 5 algoritmanın parametreleri üzerinde değişiklikler yapılarak daha iyi sonuçlar elde edilmeye çalışılmıştır. Öğrenci başarısına göre en iyi tahminleme sonucunu, Lojistik Regresyon ile kurulan model vermiştir. Derse katılma yöntemlerinin tümünün (Senkron, Asenkron ve Hibrit) öğrenci başarısına etkisi Karışıklık Matrisi yöntemiyle karşılaştırılmıştır ve en güvenilir yöntemin Hibrit olduğu görülmüştür. Bu çalışma ile üniversitelerde derse katılma yöntemlerinden hangisinin, öğrenciler açısından daha güvenilir olacağına yönelik çıkarımlarda bulunulmuştur. Dolayısıyla yapılan çıkarımlar ile birlikte bir dahaki akademik dönem için öğrenci başarı düzeyinin artması yönünde, derse katılma yöntemlerinden hangisinin daha güvenilir olduğu konusunda tahminleme mümkün olmuştur.","PeriodicalId":11443,"journal":{"name":"Düzce Üniversitesi Bilim ve Teknoloji Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Student Performance Analysis With Data Mining In Distance Education Synchronous, Asynchronous And Hybrid Courses In The Pandemic Process\",\"authors\":\"Serdar Kirişoğlu, Mehmet Yildirim\",\"doi\":\"10.29130/dubited.1067122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Günümüzde üniversite öğrencilerinin eğitime ve eğitim materyallerine internetten erişim oranları oldukça artmıştır. Eğitimde internetin kullanılması ve ders materyallerine erişimin artmasına bağlı olarak analiz edilebilecek veri setinde artış meydana gelmiştir. Bu veri setlerinden bir tanesi de (planlı veya acilen) uzaktan eğitim sürecine geçen üniversitelerin, uzaktan eğitim sistemlerinde biriken ödev, sınav, proje, performans, devam notları ve benzeridir. Yeni Korona Virüs (Covid-19) pandemisinde Yüksek Öğretim Kurumu’nun (YÖK) tavsiyesi ile üniversiteler eğitimlerine uzaktan Asenkron, Senkron ve Hibrit yöntemlerini kullanarak devam etmiş, hatta sınavları uzaktan eğitim sisteminde yapmak zorunda kalmışlardır. Bu araştırmada, Kayseri Üniversitesinin Uzaktan Eğitim Uygulama ve Araştırma Merkezi (KAYUZEM) sisteminden alınmış veriler kullanılmıştır. Araştırma kapsamında 8319 işlenmiş veri bulunmaktadır. Bu veriler üzerinde Veri Madenciliği (VM) alanında kullanılan RapidMiner programının otomatik modelleme özelliği kullanılarak varsayılan algoritmalarla geleceğe yönelik tahminleme işlemi yapılmıştır. Varsayılan algoritmalar arasından en iyi sonucu veren Derin Öğrenme, Naive Bayes, Gradient Boosted Trees, Lojistik Regresyon kullanılmış ve bu otomatik modelleme de yer almayan k-En Yakın Komşu (k-NN) algoritması da çalışmaya dahil edilmiştir. Bu 5 algoritmanın parametreleri üzerinde değişiklikler yapılarak daha iyi sonuçlar elde edilmeye çalışılmıştır. Öğrenci başarısına göre en iyi tahminleme sonucunu, Lojistik Regresyon ile kurulan model vermiştir. Derse katılma yöntemlerinin tümünün (Senkron, Asenkron ve Hibrit) öğrenci başarısına etkisi Karışıklık Matrisi yöntemiyle karşılaştırılmıştır ve en güvenilir yöntemin Hibrit olduğu görülmüştür. Bu çalışma ile üniversitelerde derse katılma yöntemlerinden hangisinin, öğrenciler açısından daha güvenilir olacağına yönelik çıkarımlarda bulunulmuştur. Dolayısıyla yapılan çıkarımlar ile birlikte bir dahaki akademik dönem için öğrenci başarı düzeyinin artması yönünde, derse katılma yöntemlerinden hangisinin daha güvenilir olduğu konusunda tahminleme mümkün olmuştur.\",\"PeriodicalId\":11443,\"journal\":{\"name\":\"Düzce Üniversitesi Bilim ve Teknoloji Dergisi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Düzce Üniversitesi Bilim ve Teknoloji Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29130/dubited.1067122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Düzce Üniversitesi Bilim ve Teknoloji Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29130/dubited.1067122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Student Performance Analysis With Data Mining In Distance Education Synchronous, Asynchronous And Hybrid Courses In The Pandemic Process
Günümüzde üniversite öğrencilerinin eğitime ve eğitim materyallerine internetten erişim oranları oldukça artmıştır. Eğitimde internetin kullanılması ve ders materyallerine erişimin artmasına bağlı olarak analiz edilebilecek veri setinde artış meydana gelmiştir. Bu veri setlerinden bir tanesi de (planlı veya acilen) uzaktan eğitim sürecine geçen üniversitelerin, uzaktan eğitim sistemlerinde biriken ödev, sınav, proje, performans, devam notları ve benzeridir. Yeni Korona Virüs (Covid-19) pandemisinde Yüksek Öğretim Kurumu’nun (YÖK) tavsiyesi ile üniversiteler eğitimlerine uzaktan Asenkron, Senkron ve Hibrit yöntemlerini kullanarak devam etmiş, hatta sınavları uzaktan eğitim sisteminde yapmak zorunda kalmışlardır. Bu araştırmada, Kayseri Üniversitesinin Uzaktan Eğitim Uygulama ve Araştırma Merkezi (KAYUZEM) sisteminden alınmış veriler kullanılmıştır. Araştırma kapsamında 8319 işlenmiş veri bulunmaktadır. Bu veriler üzerinde Veri Madenciliği (VM) alanında kullanılan RapidMiner programının otomatik modelleme özelliği kullanılarak varsayılan algoritmalarla geleceğe yönelik tahminleme işlemi yapılmıştır. Varsayılan algoritmalar arasından en iyi sonucu veren Derin Öğrenme, Naive Bayes, Gradient Boosted Trees, Lojistik Regresyon kullanılmış ve bu otomatik modelleme de yer almayan k-En Yakın Komşu (k-NN) algoritması da çalışmaya dahil edilmiştir. Bu 5 algoritmanın parametreleri üzerinde değişiklikler yapılarak daha iyi sonuçlar elde edilmeye çalışılmıştır. Öğrenci başarısına göre en iyi tahminleme sonucunu, Lojistik Regresyon ile kurulan model vermiştir. Derse katılma yöntemlerinin tümünün (Senkron, Asenkron ve Hibrit) öğrenci başarısına etkisi Karışıklık Matrisi yöntemiyle karşılaştırılmıştır ve en güvenilir yöntemin Hibrit olduğu görülmüştür. Bu çalışma ile üniversitelerde derse katılma yöntemlerinden hangisinin, öğrenciler açısından daha güvenilir olacağına yönelik çıkarımlarda bulunulmuştur. Dolayısıyla yapılan çıkarımlar ile birlikte bir dahaki akademik dönem için öğrenci başarı düzeyinin artması yönünde, derse katılma yöntemlerinden hangisinin daha güvenilir olduğu konusunda tahminleme mümkün olmuştur.