Patrick Lee, Alain Chirino Trujillo, Diana Cuevas Plancarte, O. E. Ojo, Xinyi Liu, Iyanuoluwa Shode, Yuan Zhao, Jing Peng, Anna Feldman
{"title":"MEDs for PETs:针对潜在委婉用语的多语种委婉消歧义法","authors":"Patrick Lee, Alain Chirino Trujillo, Diana Cuevas Plancarte, O. E. Ojo, Xinyi Liu, Iyanuoluwa Shode, Yuan Zhao, Jing Peng, Anna Feldman","doi":"10.48550/arXiv.2401.14526","DOIUrl":null,"url":null,"abstract":"Euphemisms are found across the world’s languages, making them a universal linguistic phenomenon. As such, euphemistic data may have useful properties for computational tasks across languages. In this study, we explore this premise by training a multilingual transformer model (XLM-RoBERTa) to disambiguate potentially euphemistic terms (PETs) in multilingual and cross-lingual settings. In line with current trends, we demonstrate that zero-shot learning across languages takes place. We also show cases where multilingual models perform better on the task compared to monolingual models by a statistically significant margin, indicating that multilingual data presents additional opportunities for models to learn about cross-lingual, computational properties of euphemisms. In a follow-up analysis, we focus on universal euphemistic “categories” such as death and bodily functions among others. We test to see whether cross-lingual data of the same domain is more important than within-language data of other domains to further understand the nature of the cross-lingual transfer.","PeriodicalId":508951,"journal":{"name":"Findings","volume":"281 3","pages":"875-881"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEDs for PETs: Multilingual Euphemism Disambiguation for Potentially Euphemistic Terms\",\"authors\":\"Patrick Lee, Alain Chirino Trujillo, Diana Cuevas Plancarte, O. E. Ojo, Xinyi Liu, Iyanuoluwa Shode, Yuan Zhao, Jing Peng, Anna Feldman\",\"doi\":\"10.48550/arXiv.2401.14526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Euphemisms are found across the world’s languages, making them a universal linguistic phenomenon. As such, euphemistic data may have useful properties for computational tasks across languages. In this study, we explore this premise by training a multilingual transformer model (XLM-RoBERTa) to disambiguate potentially euphemistic terms (PETs) in multilingual and cross-lingual settings. In line with current trends, we demonstrate that zero-shot learning across languages takes place. We also show cases where multilingual models perform better on the task compared to monolingual models by a statistically significant margin, indicating that multilingual data presents additional opportunities for models to learn about cross-lingual, computational properties of euphemisms. In a follow-up analysis, we focus on universal euphemistic “categories” such as death and bodily functions among others. We test to see whether cross-lingual data of the same domain is more important than within-language data of other domains to further understand the nature of the cross-lingual transfer.\",\"PeriodicalId\":508951,\"journal\":{\"name\":\"Findings\",\"volume\":\"281 3\",\"pages\":\"875-881\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Findings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2401.14526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.14526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MEDs for PETs: Multilingual Euphemism Disambiguation for Potentially Euphemistic Terms
Euphemisms are found across the world’s languages, making them a universal linguistic phenomenon. As such, euphemistic data may have useful properties for computational tasks across languages. In this study, we explore this premise by training a multilingual transformer model (XLM-RoBERTa) to disambiguate potentially euphemistic terms (PETs) in multilingual and cross-lingual settings. In line with current trends, we demonstrate that zero-shot learning across languages takes place. We also show cases where multilingual models perform better on the task compared to monolingual models by a statistically significant margin, indicating that multilingual data presents additional opportunities for models to learn about cross-lingual, computational properties of euphemisms. In a follow-up analysis, we focus on universal euphemistic “categories” such as death and bodily functions among others. We test to see whether cross-lingual data of the same domain is more important than within-language data of other domains to further understand the nature of the cross-lingual transfer.