利用多模态数据的力量:医学融合与分类

Et al. Bhushan Rajendra Nandwalkar
{"title":"利用多模态数据的力量:医学融合与分类","authors":"Et al. Bhushan Rajendra Nandwalkar","doi":"10.52783/anvi.v27.318","DOIUrl":null,"url":null,"abstract":"In the field of medical diagnosis, combining different types of information like text, images, and audio is a big step forward in making patient assessments more accurate. This research introduces an innovative method to bring together and categorize these different types of data. This method fills an important gap in current research [50, 54]. Proposed approach focuses on turning each type of data—text, images, and audio—into useful numbers. Text data is processed to extract meaning and context, while images are analysed using advanced computer techniques to capture important visual details. We also carefully examine audio data to extract important sound features, which is often overlooked but can be a valuable source of diagnostic information [48]. What makes our method special is how we combine these different types of data. We designed a strategy to blend these diverse sets of numbers into a single, enriched representation. This approach keeps the unique characteristics of each data type intact while harnessing their combined power for diagnosis [22, 29]. After combining the data, we use a well-chosen classification model that's known for its ability to make sense of complex data, especially in medical diagnosis scenarios [67, 71]. Proposed approach is rigorously assessing our method using a set of strong metrics that measure not only how accurate it is but also how reliable and valid it is for diagnosis [90, 94]. The results of this study mark a significant step forward in the field of combining different types of data, showing how it can greatly improve medical diagnosis. This method has the potential to revolutionize healthcare, enabling more precise and comprehensive data-driven decisions [143, 156].","PeriodicalId":40035,"journal":{"name":"Advances in Nonlinear Variational Inequalities","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing the Power of Multimodal Data: Medical Fusion and Classification\",\"authors\":\"Et al. Bhushan Rajendra Nandwalkar\",\"doi\":\"10.52783/anvi.v27.318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of medical diagnosis, combining different types of information like text, images, and audio is a big step forward in making patient assessments more accurate. This research introduces an innovative method to bring together and categorize these different types of data. This method fills an important gap in current research [50, 54]. Proposed approach focuses on turning each type of data—text, images, and audio—into useful numbers. Text data is processed to extract meaning and context, while images are analysed using advanced computer techniques to capture important visual details. We also carefully examine audio data to extract important sound features, which is often overlooked but can be a valuable source of diagnostic information [48]. What makes our method special is how we combine these different types of data. We designed a strategy to blend these diverse sets of numbers into a single, enriched representation. This approach keeps the unique characteristics of each data type intact while harnessing their combined power for diagnosis [22, 29]. After combining the data, we use a well-chosen classification model that's known for its ability to make sense of complex data, especially in medical diagnosis scenarios [67, 71]. Proposed approach is rigorously assessing our method using a set of strong metrics that measure not only how accurate it is but also how reliable and valid it is for diagnosis [90, 94]. The results of this study mark a significant step forward in the field of combining different types of data, showing how it can greatly improve medical diagnosis. This method has the potential to revolutionize healthcare, enabling more precise and comprehensive data-driven decisions [143, 156].\",\"PeriodicalId\":40035,\"journal\":{\"name\":\"Advances in Nonlinear Variational Inequalities\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Variational Inequalities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/anvi.v27.318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Variational Inequalities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/anvi.v27.318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在医疗诊断领域,将文本、图像和音频等不同类型的信息结合起来,是提高病人评估准确性的一大进步。这项研究引入了一种创新方法,将这些不同类型的数据汇集在一起并进行分类。该方法填补了当前研究的一个重要空白[50, 54]。建议的方法侧重于将每种类型的数据(文本、图像和音频)转化为有用的数字。文本数据经过处理,以提取意义和上下文,而图像则使用先进的计算机技术进行分析,以捕捉重要的视觉细节。我们还会仔细检查音频数据,以提取重要的声音特征,这往往会被忽视,但却是诊断信息的宝贵来源[48]。我们的方法之所以特别,在于我们如何将这些不同类型的数据结合起来。我们设计了一种策略,将这些不同的数据集融合到一个单一的、丰富的表征中。这种方法既能保持每种数据类型的独特性,又能利用它们的综合能力进行诊断 [22,29]。合并数据后,我们会使用一个精心挑选的分类模型,该模型以能够理解复杂数据而著称,尤其是在医疗诊断场景中[67, 71]。我们提出的方法是使用一套强大的指标对我们的方法进行严格评估,这些指标不仅能衡量方法的准确性,还能衡量方法在诊断方面的可靠性和有效性[90, 94]。这项研究的结果标志着我们在结合不同类型数据的领域迈出了重要一步,显示了它如何能极大地改善医疗诊断。这种方法有可能彻底改变医疗保健,使数据驱动的决策更加精确和全面[143, 156]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing the Power of Multimodal Data: Medical Fusion and Classification
In the field of medical diagnosis, combining different types of information like text, images, and audio is a big step forward in making patient assessments more accurate. This research introduces an innovative method to bring together and categorize these different types of data. This method fills an important gap in current research [50, 54]. Proposed approach focuses on turning each type of data—text, images, and audio—into useful numbers. Text data is processed to extract meaning and context, while images are analysed using advanced computer techniques to capture important visual details. We also carefully examine audio data to extract important sound features, which is often overlooked but can be a valuable source of diagnostic information [48]. What makes our method special is how we combine these different types of data. We designed a strategy to blend these diverse sets of numbers into a single, enriched representation. This approach keeps the unique characteristics of each data type intact while harnessing their combined power for diagnosis [22, 29]. After combining the data, we use a well-chosen classification model that's known for its ability to make sense of complex data, especially in medical diagnosis scenarios [67, 71]. Proposed approach is rigorously assessing our method using a set of strong metrics that measure not only how accurate it is but also how reliable and valid it is for diagnosis [90, 94]. The results of this study mark a significant step forward in the field of combining different types of data, showing how it can greatly improve medical diagnosis. This method has the potential to revolutionize healthcare, enabling more precise and comprehensive data-driven decisions [143, 156].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear Elliptic Equations on the Sierpiński Carpet On Hosoya and Schultz Polynomials of Chain of Pentagonal Graph Integral Solutions for the Diophantine Equation of Higher Degree with Six Unknowns x⁶ − y⁶ − 3456z³ = 800(p² − q²)R⁸ Mathematical Modeling and Analysis of Energy Aware Probabilistic Distribution Based Cluster Head Selection Algorithm for Wireless Sensor Networks Numerical Simulation and Mathematical Analysis of Meta Heuristic MPPT System for Solar Photovoltaic Applications Under Non-Linear Operational Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1