农业小物体检测研究:以红杨梅为例

Shan Hua, Kaiyuan Han, Shuangwei Li, Minjie Xu, Shouyan Zhu, Zhifu Xu
{"title":"农业小物体检测研究:以红杨梅为例","authors":"Shan Hua, Kaiyuan Han, Shuangwei Li, Minjie Xu, Shouyan Zhu, Zhifu Xu","doi":"10.1117/12.3014464","DOIUrl":null,"url":null,"abstract":"With the continuous improvement of intelligent management level in red bayberry orchards, the demand for automatic picking and automatic sorting is becoming increasingly apparent. The prerequisite for achieving these automated processes is to quickly identify the maturity of red bayberries by object detection. In this study, we classified red bayberry into 8 levels of maturity and achieved an object detection precision of 88.9%. We used a fast object detection model, combined with small object optimization methods and small feature extraction layers to get higher precision.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"59 2","pages":"129692B - 129692B-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on object detection for small objects in agriculture: taking red bayberry as an example\",\"authors\":\"Shan Hua, Kaiyuan Han, Shuangwei Li, Minjie Xu, Shouyan Zhu, Zhifu Xu\",\"doi\":\"10.1117/12.3014464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous improvement of intelligent management level in red bayberry orchards, the demand for automatic picking and automatic sorting is becoming increasingly apparent. The prerequisite for achieving these automated processes is to quickly identify the maturity of red bayberries by object detection. In this study, we classified red bayberry into 8 levels of maturity and achieved an object detection precision of 88.9%. We used a fast object detection model, combined with small object optimization methods and small feature extraction layers to get higher precision.\",\"PeriodicalId\":516634,\"journal\":{\"name\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"volume\":\"59 2\",\"pages\":\"129692B - 129692B-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3014464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着红杨梅果园智能化管理水平的不断提高,对自动采摘和自动分拣的需求日益明显。实现这些自动化流程的前提是通过物体检测快速识别红杨梅的成熟度。在这项研究中,我们将红杨梅分为 8 个成熟度等级,物体检测精度达到 88.9%。我们使用了快速物体检测模型,并结合小物体优化方法和小特征提取层来获得更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on object detection for small objects in agriculture: taking red bayberry as an example
With the continuous improvement of intelligent management level in red bayberry orchards, the demand for automatic picking and automatic sorting is becoming increasingly apparent. The prerequisite for achieving these automated processes is to quickly identify the maturity of red bayberries by object detection. In this study, we classified red bayberry into 8 levels of maturity and achieved an object detection precision of 88.9%. We used a fast object detection model, combined with small object optimization methods and small feature extraction layers to get higher precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The ship classification and detection method of optical remote sensing image based on improved YOLOv7-tiny Collaborative filtering recommendation method based on graph convolutional neural networks Research on the simplification of building complex model under multi-factor constraints Improved ant colony algorithm based on artificial gravity field for adaptive dynamic path planning Application analysis of three-dimensional laser scanning technology in the protection of dong drum tower in Sanjiang county
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1