基于卷积神经网络的肺结节检测与再识别

Qiangchao Shi, Zhibing Shu
{"title":"基于卷积神经网络的肺结节检测与再识别","authors":"Qiangchao Shi, Zhibing Shu","doi":"10.1117/12.3014478","DOIUrl":null,"url":null,"abstract":"Lung cancer is the disease with the highest incidence rate and mortality of cancer in China, which seriously threatens human life safety. Pulmonary nodules are the main factor leading to lung cancer, and their precise identification plays a crucial role in clinical diagnosis. This paper proposes a lung nodule detection model that combines global image information to address issues. The model is based on improved YOLOV5 network. Finally, comparative experiments have verified the accuracy and effectiveness of this model.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"24 1","pages":"129692E - 129692E-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and recongnition of pulmonary nodules based on convolution neural network\",\"authors\":\"Qiangchao Shi, Zhibing Shu\",\"doi\":\"10.1117/12.3014478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cancer is the disease with the highest incidence rate and mortality of cancer in China, which seriously threatens human life safety. Pulmonary nodules are the main factor leading to lung cancer, and their precise identification plays a crucial role in clinical diagnosis. This paper proposes a lung nodule detection model that combines global image information to address issues. The model is based on improved YOLOV5 network. Finally, comparative experiments have verified the accuracy and effectiveness of this model.\",\"PeriodicalId\":516634,\"journal\":{\"name\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"volume\":\"24 1\",\"pages\":\"129692E - 129692E-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3014478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肺癌是我国发病率和死亡率最高的肿瘤疾病,严重威胁着人类的生命安全。肺结节是导致肺癌的主要因素,其精确识别在临床诊断中起着至关重要的作用。本文针对这一问题,提出了一种结合全局图像信息的肺结节检测模型。该模型基于改进的 YOLOV5 网络。最后,对比实验验证了该模型的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and recongnition of pulmonary nodules based on convolution neural network
Lung cancer is the disease with the highest incidence rate and mortality of cancer in China, which seriously threatens human life safety. Pulmonary nodules are the main factor leading to lung cancer, and their precise identification plays a crucial role in clinical diagnosis. This paper proposes a lung nodule detection model that combines global image information to address issues. The model is based on improved YOLOV5 network. Finally, comparative experiments have verified the accuracy and effectiveness of this model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The ship classification and detection method of optical remote sensing image based on improved YOLOv7-tiny Collaborative filtering recommendation method based on graph convolutional neural networks Research on the simplification of building complex model under multi-factor constraints Improved ant colony algorithm based on artificial gravity field for adaptive dynamic path planning Application analysis of three-dimensional laser scanning technology in the protection of dong drum tower in Sanjiang county
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1