发票信息自动识别算法研究

Liangyu Jiao, Hui Li
{"title":"发票信息自动识别算法研究","authors":"Liangyu Jiao, Hui Li","doi":"10.1117/12.3014488","DOIUrl":null,"url":null,"abstract":"The invoice reimbursement process is very cumbersome and requires manual entry of key information in the invoice, which wastes a lot of manpower and time. Therefore, it is particularly important to design an algorithm for intelligent identification of invoice information. Traditional algorithms can identify information from scanned invoice images. However, since in our country, most of the invoice information is Chinese characters, the current recognition algorithm has a certain degree of difficulty in identifying Chinese characters, and garbled characters will appear. Therefore, this article combines the CTPN text detection algorithm with the DesNets text recognition algorithm, and uses this algorithm to detect and recognize text on the information extracted from the invoice area image. Experiments show that the model outperforms the comparison model, with a recognition accuracy of up to 99.79%.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"25 3","pages":"129690U - 129690U-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on automatic identification algorithm of invoice information\",\"authors\":\"Liangyu Jiao, Hui Li\",\"doi\":\"10.1117/12.3014488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The invoice reimbursement process is very cumbersome and requires manual entry of key information in the invoice, which wastes a lot of manpower and time. Therefore, it is particularly important to design an algorithm for intelligent identification of invoice information. Traditional algorithms can identify information from scanned invoice images. However, since in our country, most of the invoice information is Chinese characters, the current recognition algorithm has a certain degree of difficulty in identifying Chinese characters, and garbled characters will appear. Therefore, this article combines the CTPN text detection algorithm with the DesNets text recognition algorithm, and uses this algorithm to detect and recognize text on the information extracted from the invoice area image. Experiments show that the model outperforms the comparison model, with a recognition accuracy of up to 99.79%.\",\"PeriodicalId\":516634,\"journal\":{\"name\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"volume\":\"25 3\",\"pages\":\"129690U - 129690U-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3014488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发票报销流程非常繁琐,需要人工录入发票中的关键信息,浪费了大量的人力和时间。因此,设计一种智能识别发票信息的算法尤为重要。传统算法可以从扫描的发票图像中识别信息。但由于在我国,大部分发票信息都是汉字,目前的识别算法在识别汉字时存在一定难度,会出现乱码。因此,本文将 CTPN 文本检测算法与 DesNets 文本识别算法相结合,利用该算法对从发票区域图像中提取的信息进行文本检测和识别。实验表明,该模型优于对比模型,识别准确率高达 99.79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on automatic identification algorithm of invoice information
The invoice reimbursement process is very cumbersome and requires manual entry of key information in the invoice, which wastes a lot of manpower and time. Therefore, it is particularly important to design an algorithm for intelligent identification of invoice information. Traditional algorithms can identify information from scanned invoice images. However, since in our country, most of the invoice information is Chinese characters, the current recognition algorithm has a certain degree of difficulty in identifying Chinese characters, and garbled characters will appear. Therefore, this article combines the CTPN text detection algorithm with the DesNets text recognition algorithm, and uses this algorithm to detect and recognize text on the information extracted from the invoice area image. Experiments show that the model outperforms the comparison model, with a recognition accuracy of up to 99.79%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The ship classification and detection method of optical remote sensing image based on improved YOLOv7-tiny Collaborative filtering recommendation method based on graph convolutional neural networks Research on the simplification of building complex model under multi-factor constraints Improved ant colony algorithm based on artificial gravity field for adaptive dynamic path planning Application analysis of three-dimensional laser scanning technology in the protection of dong drum tower in Sanjiang county
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1