{"title":"使用压缩成型微波工艺加工的混合纳米复合材料的实验分析","authors":"Gaurav Arora","doi":"10.1177/23977914231224054","DOIUrl":null,"url":null,"abstract":"Microwave irradiation has emerged as a versatile and efficient method for synthesizing polymer nanocomposites, offering advantages such as selectivity, speed, and effectiveness in heating materials. This study explores the blending of low-density polyethylene (LDPE) and polypropylene (PP) with carbon nanotubes (CNTs) using microwave processing. The nanocomposites were characterized for their mechanical properties through tensile and fracture toughness tests. Results indicate that LDPE/CNT blended with PP/CNT pellets exhibited improved Young’s modulus and fracture toughness, while LDPE/CNT blended with PP/CNT powder showed enhanced stiffness and fracture toughness. The critical stress intensity factor ( KIC) increased with higher proportions of PP in both cases, signifying improved crack resistance. XRD and SEM analyses confirmed enhanced crystallinity and proper bonding between polymers and CNTs. Overall, this study demonstrates the potential of microwave processing in producing nanocomposites with enhanced mechanical properties, offering a promising avenue for engineering applications.","PeriodicalId":516661,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental analysis of blended nanocomposites processed using compression molded microwave process\",\"authors\":\"Gaurav Arora\",\"doi\":\"10.1177/23977914231224054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave irradiation has emerged as a versatile and efficient method for synthesizing polymer nanocomposites, offering advantages such as selectivity, speed, and effectiveness in heating materials. This study explores the blending of low-density polyethylene (LDPE) and polypropylene (PP) with carbon nanotubes (CNTs) using microwave processing. The nanocomposites were characterized for their mechanical properties through tensile and fracture toughness tests. Results indicate that LDPE/CNT blended with PP/CNT pellets exhibited improved Young’s modulus and fracture toughness, while LDPE/CNT blended with PP/CNT powder showed enhanced stiffness and fracture toughness. The critical stress intensity factor ( KIC) increased with higher proportions of PP in both cases, signifying improved crack resistance. XRD and SEM analyses confirmed enhanced crystallinity and proper bonding between polymers and CNTs. Overall, this study demonstrates the potential of microwave processing in producing nanocomposites with enhanced mechanical properties, offering a promising avenue for engineering applications.\",\"PeriodicalId\":516661,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23977914231224054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914231224054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental analysis of blended nanocomposites processed using compression molded microwave process
Microwave irradiation has emerged as a versatile and efficient method for synthesizing polymer nanocomposites, offering advantages such as selectivity, speed, and effectiveness in heating materials. This study explores the blending of low-density polyethylene (LDPE) and polypropylene (PP) with carbon nanotubes (CNTs) using microwave processing. The nanocomposites were characterized for their mechanical properties through tensile and fracture toughness tests. Results indicate that LDPE/CNT blended with PP/CNT pellets exhibited improved Young’s modulus and fracture toughness, while LDPE/CNT blended with PP/CNT powder showed enhanced stiffness and fracture toughness. The critical stress intensity factor ( KIC) increased with higher proportions of PP in both cases, signifying improved crack resistance. XRD and SEM analyses confirmed enhanced crystallinity and proper bonding between polymers and CNTs. Overall, this study demonstrates the potential of microwave processing in producing nanocomposites with enhanced mechanical properties, offering a promising avenue for engineering applications.