农作物气候与病原体关系建模的变量选择程序比较。

Q4 Agricultural and Biological Sciences AgriScientia Pub Date : 2024-01-05 DOI:10.31047/1668.298x.v40.n2.40871
Franco Marcelo Suarez, C. Bruno, María de la Paz Giménez Pecci, M. Balzarini
{"title":"农作物气候与病原体关系建模的变量选择程序比较。","authors":"Franco Marcelo Suarez, C. Bruno, María de la Paz Giménez Pecci, M. Balzarini","doi":"10.31047/1668.298x.v40.n2.40871","DOIUrl":null,"url":null,"abstract":"Hoy es posible acceder fácilmente a cuantiosos volúmenes de datos climáticos georreferenciados. Estos pueden ser usados para modelar la relación entre condiciones climáticas y enfermedad, para lo cual es necesario usar múltiples variables meteorológicas, usualmente correlacionadas y redundantes. La selección de variables permite identificar un subconjunto de regresoras relevantes para construir modelos predictivos. Stepwise, Boruta y LASSO son procedimientos de selección de variables de distinta naturaleza por lo que su desempeño relativo ha sido poco explorado. El objetivo de este trabajo fue la comparación de estos métodos aplicados simultáneamente en la construcción de modelos de regresión para predecir riesgo de enfermedad desde datos climáticos. Se utilizaron tres bases de datos georreferenciados con valores de presencia/ausencia de distintos patógenos en cultivos de maíz en Argentina. Para cada escenario se obtuvieron variables climáticas del periodo previo a la siembra hasta la cosecha. Con los tres métodos se generaron modelos predictivos con precisión de clasificación cercana al 70 %. LASSO produjo mejor predicción, seleccionando una cantidad intermedia de variables respecto a Stepwise (menor cantidad) y a Boruta (mayor). Los resultados podrían extenderse a otros patosistemas y contribuir a la construcción de sistemas de alarma basados en variables climáticas.","PeriodicalId":39278,"journal":{"name":"AgriScientia","volume":"59 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparación de procedimientos de selección de variables para la modelación de la relación clima-patógenos en cultivos\",\"authors\":\"Franco Marcelo Suarez, C. Bruno, María de la Paz Giménez Pecci, M. Balzarini\",\"doi\":\"10.31047/1668.298x.v40.n2.40871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hoy es posible acceder fácilmente a cuantiosos volúmenes de datos climáticos georreferenciados. Estos pueden ser usados para modelar la relación entre condiciones climáticas y enfermedad, para lo cual es necesario usar múltiples variables meteorológicas, usualmente correlacionadas y redundantes. La selección de variables permite identificar un subconjunto de regresoras relevantes para construir modelos predictivos. Stepwise, Boruta y LASSO son procedimientos de selección de variables de distinta naturaleza por lo que su desempeño relativo ha sido poco explorado. El objetivo de este trabajo fue la comparación de estos métodos aplicados simultáneamente en la construcción de modelos de regresión para predecir riesgo de enfermedad desde datos climáticos. Se utilizaron tres bases de datos georreferenciados con valores de presencia/ausencia de distintos patógenos en cultivos de maíz en Argentina. Para cada escenario se obtuvieron variables climáticas del periodo previo a la siembra hasta la cosecha. Con los tres métodos se generaron modelos predictivos con precisión de clasificación cercana al 70 %. LASSO produjo mejor predicción, seleccionando una cantidad intermedia de variables respecto a Stepwise (menor cantidad) y a Boruta (mayor). Los resultados podrían extenderse a otros patosistemas y contribuir a la construcción de sistemas de alarma basados en variables climáticas.\",\"PeriodicalId\":39278,\"journal\":{\"name\":\"AgriScientia\",\"volume\":\"59 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriScientia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31047/1668.298x.v40.n2.40871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriScientia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31047/1668.298x.v40.n2.40871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

大量地理参照气候数据现在很容易获得。这些数据可用来模拟气候条件与疾病之间的关系,为此有必要使用多种气象变量,通常是相关的冗余变量。通过对变量的选择,可以确定相关回归因子的子集,从而建立预测模型。逐步法、Boruta 法和 LASSO 法是不同性质的变量选择程序,对它们的相对性能探讨甚少。本文旨在比较这些同时应用于构建回归模型的方法,以便从气候数据中预测疾病风险。本文使用了三个地理参照数据库,其中包含阿根廷玉米作物中不同病原体的存在/不存在值。在每种情况下,都获得了从播种前到收获期的气候变量。使用这三种方法生成的预测模型的分类准确率接近 70%。LASSO 的预测效果更好,它选择的变量数量介于 Stepwise(较少)和 Boruta(较多)之间。这些结果可推广到其他病理系统,并有助于构建基于气候变量的警报系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparación de procedimientos de selección de variables para la modelación de la relación clima-patógenos en cultivos
Hoy es posible acceder fácilmente a cuantiosos volúmenes de datos climáticos georreferenciados. Estos pueden ser usados para modelar la relación entre condiciones climáticas y enfermedad, para lo cual es necesario usar múltiples variables meteorológicas, usualmente correlacionadas y redundantes. La selección de variables permite identificar un subconjunto de regresoras relevantes para construir modelos predictivos. Stepwise, Boruta y LASSO son procedimientos de selección de variables de distinta naturaleza por lo que su desempeño relativo ha sido poco explorado. El objetivo de este trabajo fue la comparación de estos métodos aplicados simultáneamente en la construcción de modelos de regresión para predecir riesgo de enfermedad desde datos climáticos. Se utilizaron tres bases de datos georreferenciados con valores de presencia/ausencia de distintos patógenos en cultivos de maíz en Argentina. Para cada escenario se obtuvieron variables climáticas del periodo previo a la siembra hasta la cosecha. Con los tres métodos se generaron modelos predictivos con precisión de clasificación cercana al 70 %. LASSO produjo mejor predicción, seleccionando una cantidad intermedia de variables respecto a Stepwise (menor cantidad) y a Boruta (mayor). Los resultados podrían extenderse a otros patosistemas y contribuir a la construcción de sistemas de alarma basados en variables climáticas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AgriScientia
AgriScientia Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊介绍: AgriScientia es una revista de acceso abierto, de carácter científico-académico, gestionada por el Área de Difusión Científica de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Córdoba, Argentina. La revista recibe artículos en los idiomas español e inglés. El objetivo de esta publicación es la difusión de los resultados de investigaciones de carácter agronómico. Está destinada a investigadores, estudiantes de pregrado, grado y posgrado, profesionales en el área de las ciencias agropecuarias y público en general interesado en las temáticas relacionadas. Su periodicidad es semestral. Los artículos se reciben durante todo el año. Los tipos de documentos que se publican son artículos científicos, comunicaciones y revisiones.
期刊最新文献
Assessment of land use change in the dryland agricultural region of Córdoba, Argentina, between 2000 and 2020 based on NDVI data Impacto ambiental de las aplicaciones de fitosanitarios en producciones ornamentales intensivas en el partido de Moreno, provincia de Buenos Aires Selección de cepas bacterianas con capacidad antifúngica contra fitopatógenos de alfalfa para constituir un consorcio bacteriano Evaluating Nitrogen Release Rates of Commercial Slow-Release Urea Products Using Brix Value Analysis: A Validation Study Comparing Two Methods Aportes a la morfología de semillas de Hibiscus cannabinus L. y ajuste de la prueba de tetrazolio para estimar viabilidad y vigor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1