通过特征转移和高斯过程回归预测工业机器人谐波减速器的性能

M. Hu, Guofeng Wang, Zenghuan Cao
{"title":"通过特征转移和高斯过程回归预测工业机器人谐波减速器的性能","authors":"M. Hu, Guofeng Wang, Zenghuan Cao","doi":"10.1784/insi.2024.66.1.41","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of identifying faults in the harmonic reducers of industrial robots by analysing their vibration signals. In order to solve the problem of obtaining fault data and rotation error from harmonic reducers in service, an accuracy performance prediction method\n based on transfer learning and Gaussian process regression (GPR) is proposed. The Euclidean distance between the spectral sequence of each component is proposed as the fitness index to optimise the transition bandwidth of the filter banks. The optimised empirical wavelet transform (OEWT) is\n used for signal decomposition to obtain sensitive frequency bands. A feature transfer method based on semi-supervised transfer component analysis (SSTCA) is proposed to achieve target domain feature transfer under missing data conditions. A prediction model based on GPR is established using\n the mapped features to predict the performance and accuracy of the harmonic reducer. The effectiveness of the proposed method is verified through model evaluation indicators and degradation experiments.","PeriodicalId":344397,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"6 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance prediction of industrial robot harmonic reducer via feature transfer and Gaussian process regression\",\"authors\":\"M. Hu, Guofeng Wang, Zenghuan Cao\",\"doi\":\"10.1784/insi.2024.66.1.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of identifying faults in the harmonic reducers of industrial robots by analysing their vibration signals. In order to solve the problem of obtaining fault data and rotation error from harmonic reducers in service, an accuracy performance prediction method\\n based on transfer learning and Gaussian process regression (GPR) is proposed. The Euclidean distance between the spectral sequence of each component is proposed as the fitness index to optimise the transition bandwidth of the filter banks. The optimised empirical wavelet transform (OEWT) is\\n used for signal decomposition to obtain sensitive frequency bands. A feature transfer method based on semi-supervised transfer component analysis (SSTCA) is proposed to achieve target domain feature transfer under missing data conditions. A prediction model based on GPR is established using\\n the mapped features to predict the performance and accuracy of the harmonic reducer. The effectiveness of the proposed method is verified through model evaluation indicators and degradation experiments.\",\"PeriodicalId\":344397,\"journal\":{\"name\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"volume\":\"6 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1784/insi.2024.66.1.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2024.66.1.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了通过分析工业机器人谐波减速器的振动信号来识别其故障的问题。为了解决从在役谐波减速器中获取故障数据和旋转误差的问题,本文提出了一种基于迁移学习和高斯过程回归(GPR)的精度性能预测方法。提出了各分量光谱序列之间的欧氏距离作为优化滤波器组过渡带宽的适应性指标。优化的经验小波变换(OEWT)用于信号分解,以获得敏感频带。提出了一种基于半监督转移分量分析(SSTCA)的特征转移方法,以实现缺失数据条件下的目标域特征转移。利用映射特征建立了基于 GPR 的预测模型,以预测谐波减速器的性能和精度。通过模型评估指标和降级实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance prediction of industrial robot harmonic reducer via feature transfer and Gaussian process regression
This paper addresses the problem of identifying faults in the harmonic reducers of industrial robots by analysing their vibration signals. In order to solve the problem of obtaining fault data and rotation error from harmonic reducers in service, an accuracy performance prediction method based on transfer learning and Gaussian process regression (GPR) is proposed. The Euclidean distance between the spectral sequence of each component is proposed as the fitness index to optimise the transition bandwidth of the filter banks. The optimised empirical wavelet transform (OEWT) is used for signal decomposition to obtain sensitive frequency bands. A feature transfer method based on semi-supervised transfer component analysis (SSTCA) is proposed to achieve target domain feature transfer under missing data conditions. A prediction model based on GPR is established using the mapped features to predict the performance and accuracy of the harmonic reducer. The effectiveness of the proposed method is verified through model evaluation indicators and degradation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-criterion analysis-based artificial intelligence system for condition monitoring of electrical transformers MFL detection of adjacent pipeline defects: a finite element simulation of signal characteristics A multi-frequency balanced electromagnetic field measurement for arbitrary angles of pipeline cracks with high sensitivity Ultrasonic total focusing method for internal defects in composite insulators Developments in ultrasonic and eddy current testing in the 1970s and 1980s with emphasis on the requirements of the UK nuclear power industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1