用于解决血流问题的物理信息神经网络

Yao-Chung Chang, Yu-Shan Lin, Jeu-Jiun Hu
{"title":"用于解决血流问题的物理信息神经网络","authors":"Yao-Chung Chang, Yu-Shan Lin, Jeu-Jiun Hu","doi":"10.23919/ICACT60172.2024.10471938","DOIUrl":null,"url":null,"abstract":"The Physics-informed Neural Networks Deep Learning (PINN) framework has been introduced with the primary objective of advancing the field of blood flow simulations. PINN Deep Learning involves data-driven training for flow prediction and can incorporate the understanding of physical laws described by partial differential equations (PDEs). This paper employs the PINN Method for simulating blood flows. Multiple test cases will be computed and compared with other numerical and experimental results to validate the approach. The results demonstrate that the PINN method functions as expected, and validation against experimental and other researchers' results ensures the generation of meaningful output data and the prudent selection of parameters.","PeriodicalId":518077,"journal":{"name":"2024 26th International Conference on Advanced Communications Technology (ICACT)","volume":"16 7","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-Informed Neural Networks for Solving Blood Flows\",\"authors\":\"Yao-Chung Chang, Yu-Shan Lin, Jeu-Jiun Hu\",\"doi\":\"10.23919/ICACT60172.2024.10471938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Physics-informed Neural Networks Deep Learning (PINN) framework has been introduced with the primary objective of advancing the field of blood flow simulations. PINN Deep Learning involves data-driven training for flow prediction and can incorporate the understanding of physical laws described by partial differential equations (PDEs). This paper employs the PINN Method for simulating blood flows. Multiple test cases will be computed and compared with other numerical and experimental results to validate the approach. The results demonstrate that the PINN method functions as expected, and validation against experimental and other researchers' results ensures the generation of meaningful output data and the prudent selection of parameters.\",\"PeriodicalId\":518077,\"journal\":{\"name\":\"2024 26th International Conference on Advanced Communications Technology (ICACT)\",\"volume\":\"16 7\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 26th International Conference on Advanced Communications Technology (ICACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICACT60172.2024.10471938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 26th International Conference on Advanced Communications Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT60172.2024.10471938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引入物理信息神经网络深度学习(PINN)框架的主要目的是推动血流模拟领域的发展。PINN 深度学习涉及数据驱动的流动预测训练,并能结合对偏微分方程(PDE)描述的物理规律的理解。本文采用 PINN 方法模拟血流。将计算多个测试案例,并与其他数值和实验结果进行比较,以验证该方法。结果表明,PINN 方法的功能符合预期,与实验结果和其他研究人员的结果进行验证,可确保生成有意义的输出数据并谨慎选择参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physics-Informed Neural Networks for Solving Blood Flows
The Physics-informed Neural Networks Deep Learning (PINN) framework has been introduced with the primary objective of advancing the field of blood flow simulations. PINN Deep Learning involves data-driven training for flow prediction and can incorporate the understanding of physical laws described by partial differential equations (PDEs). This paper employs the PINN Method for simulating blood flows. Multiple test cases will be computed and compared with other numerical and experimental results to validate the approach. The results demonstrate that the PINN method functions as expected, and validation against experimental and other researchers' results ensures the generation of meaningful output data and the prudent selection of parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Inter-Satellite Data Relay in Dynamic Space Communication Deep Learning Based Cervical Spine Bones Detection: A Case Study Using YOLO Deep Reinforcement Learning Based Beamforming in RIS-Assisted MIMO System Under Hardware Loss An Enhanced Topic Modeling Method in Educational Domain by Integrating LDA with Semantic Leveraging Deep Learning for Automated Analysis of Colorectal Cancer Histology Images to Elevate Diagnosis Precision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1