水下无线传感器网络的运动估计灵活定位方法

A. S. Ismail, Ammar Hawbani, Xingfu Wang, Samah Abdel Aziz, Liang Zhao, Nasir Saeed
{"title":"水下无线传感器网络的运动估计灵活定位方法","authors":"A. S. Ismail, Ammar Hawbani, Xingfu Wang, Samah Abdel Aziz, Liang Zhao, Nasir Saeed","doi":"10.23919/ICACT60172.2024.10471968","DOIUrl":null,"url":null,"abstract":"Due to the challenging conditions of underwater environments, such as node mobility and large-scale networks, achieving localization in large-scale mobile underwater sensor networks (UWSN) is a difficult task. This paper introduces a scheme known as the Flexible Localization Method with Mobility Estimation (FLMME) for UWSNs by utilizing the expected mobility patterns of underwater objects. FLMME performs localization hierarchically by splitting the process into anchor and ordinary node localization. Each node estimates its next mobility pattern based on previous location information, enabling estimates about its next location. Anchor nodes, holding known locations, manage the localization process to balance accuracy and error trade-offs. Extensive simulations demonstrate that FLMME reduces localization errors and hence increases localization accuracy.","PeriodicalId":518077,"journal":{"name":"2024 26th International Conference on Advanced Communications Technology (ICACT)","volume":"58 ","pages":"354-359"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Localization Method with Motion Estimation for Underwater Wireless Sensor Networks\",\"authors\":\"A. S. Ismail, Ammar Hawbani, Xingfu Wang, Samah Abdel Aziz, Liang Zhao, Nasir Saeed\",\"doi\":\"10.23919/ICACT60172.2024.10471968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the challenging conditions of underwater environments, such as node mobility and large-scale networks, achieving localization in large-scale mobile underwater sensor networks (UWSN) is a difficult task. This paper introduces a scheme known as the Flexible Localization Method with Mobility Estimation (FLMME) for UWSNs by utilizing the expected mobility patterns of underwater objects. FLMME performs localization hierarchically by splitting the process into anchor and ordinary node localization. Each node estimates its next mobility pattern based on previous location information, enabling estimates about its next location. Anchor nodes, holding known locations, manage the localization process to balance accuracy and error trade-offs. Extensive simulations demonstrate that FLMME reduces localization errors and hence increases localization accuracy.\",\"PeriodicalId\":518077,\"journal\":{\"name\":\"2024 26th International Conference on Advanced Communications Technology (ICACT)\",\"volume\":\"58 \",\"pages\":\"354-359\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 26th International Conference on Advanced Communications Technology (ICACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICACT60172.2024.10471968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 26th International Conference on Advanced Communications Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT60172.2024.10471968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于节点移动性和大规模网络等水下环境的挑战性条件,在大规模移动水下传感器网络(UWSN)中实现定位是一项艰巨的任务。本文利用水下物体的预期移动模式,为 UWSN 引入了一种称为 "带移动性估计的灵活定位方法(FLMME)"的方案。FLMME 将定位过程分为锚节点定位和普通节点定位,从而分层执行定位。每个节点根据先前的位置信息估算其下一个移动模式,从而估算其下一个位置。掌握已知位置的锚节点负责管理定位过程,以平衡精度和误差之间的权衡。大量模拟证明,FLMME 可减少定位误差,从而提高定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible Localization Method with Motion Estimation for Underwater Wireless Sensor Networks
Due to the challenging conditions of underwater environments, such as node mobility and large-scale networks, achieving localization in large-scale mobile underwater sensor networks (UWSN) is a difficult task. This paper introduces a scheme known as the Flexible Localization Method with Mobility Estimation (FLMME) for UWSNs by utilizing the expected mobility patterns of underwater objects. FLMME performs localization hierarchically by splitting the process into anchor and ordinary node localization. Each node estimates its next mobility pattern based on previous location information, enabling estimates about its next location. Anchor nodes, holding known locations, manage the localization process to balance accuracy and error trade-offs. Extensive simulations demonstrate that FLMME reduces localization errors and hence increases localization accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Inter-Satellite Data Relay in Dynamic Space Communication Deep Learning Based Cervical Spine Bones Detection: A Case Study Using YOLO Deep Reinforcement Learning Based Beamforming in RIS-Assisted MIMO System Under Hardware Loss An Enhanced Topic Modeling Method in Educational Domain by Integrating LDA with Semantic Leveraging Deep Learning for Automated Analysis of Colorectal Cancer Histology Images to Elevate Diagnosis Precision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1