集成系统开发:利用 TensorFlow 和物联网进行人体检测和货物控制

Sanaa Mehnaz Baichoo, Raed Abdulla, Muhammad Ehsan Rana
{"title":"集成系统开发:利用 TensorFlow 和物联网进行人体检测和货物控制","authors":"Sanaa Mehnaz Baichoo, Raed Abdulla, Muhammad Ehsan Rana","doi":"10.1109/ICETSIS61505.2024.10459621","DOIUrl":null,"url":null,"abstract":"This research comprises the implementation methods used to design and develop a human detection system and goods control system. The development of the TensorFlow Machine Learning algorithm for human detection is described in this work. The use of IoT devices, namely ESP32 CAM for data capture, ESP32 for controlling the overall system, and establishing Firebase Database for communication between the TensorFlow development platform, PyCharm, and ESP32 are explained and justified in this paper. The development of the goods control system using ultrasonic sensors and ESP32 as a micro controller, to control the stepper motor, is also explained and justified. Each system was tested individually first before integrating them. Five tests were performed, namely the response time to activate the stepper motor, the human detection accuracy test, the precision of the ultrasonic sensor responsible for height control, the precision of the ultrasonic sensor responsible for motion control, and the stress analysis test of goods lift. The tests present coherent data, but limitations were still found during the testing phase and had to be readjusted before the final integration of both systems.","PeriodicalId":518932,"journal":{"name":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","volume":"322 1","pages":"553-558"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Systems Development: Human Detection and Goods Control with TensorFlow and IoT\",\"authors\":\"Sanaa Mehnaz Baichoo, Raed Abdulla, Muhammad Ehsan Rana\",\"doi\":\"10.1109/ICETSIS61505.2024.10459621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research comprises the implementation methods used to design and develop a human detection system and goods control system. The development of the TensorFlow Machine Learning algorithm for human detection is described in this work. The use of IoT devices, namely ESP32 CAM for data capture, ESP32 for controlling the overall system, and establishing Firebase Database for communication between the TensorFlow development platform, PyCharm, and ESP32 are explained and justified in this paper. The development of the goods control system using ultrasonic sensors and ESP32 as a micro controller, to control the stepper motor, is also explained and justified. Each system was tested individually first before integrating them. Five tests were performed, namely the response time to activate the stepper motor, the human detection accuracy test, the precision of the ultrasonic sensor responsible for height control, the precision of the ultrasonic sensor responsible for motion control, and the stress analysis test of goods lift. The tests present coherent data, but limitations were still found during the testing phase and had to be readjusted before the final integration of both systems.\",\"PeriodicalId\":518932,\"journal\":{\"name\":\"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)\",\"volume\":\"322 1\",\"pages\":\"553-558\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETSIS61505.2024.10459621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSIS61505.2024.10459621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究包括用于设计和开发人体检测系统和货物控制系统的实施方法。本作品介绍了用于人体检测的 TensorFlow 机器学习算法的开发过程。本文对物联网设备的使用进行了说明和论证,即使用 ESP32 CAM 采集数据,使用 ESP32 控制整个系统,以及建立 Firebase 数据库用于 TensorFlow 开发平台、PyCharm 和 ESP32 之间的通信。本文还对使用超声波传感器和 ESP32 作为微控制器来控制步进电机的货物控制系统的开发过程进行了说明和论证。在整合每个系统之前,首先对其进行了单独测试。共进行了五项测试,即启动步进电机的响应时间、人体检测精度测试、负责高度控制的超声波传感器的精度、负责运动控制的超声波传感器的精度以及货物升降机的应力分析测试。这些测试提供了一致的数据,但在测试阶段仍发现了一些局限性,必须在最终整合两个系统之前进行重新调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Systems Development: Human Detection and Goods Control with TensorFlow and IoT
This research comprises the implementation methods used to design and develop a human detection system and goods control system. The development of the TensorFlow Machine Learning algorithm for human detection is described in this work. The use of IoT devices, namely ESP32 CAM for data capture, ESP32 for controlling the overall system, and establishing Firebase Database for communication between the TensorFlow development platform, PyCharm, and ESP32 are explained and justified in this paper. The development of the goods control system using ultrasonic sensors and ESP32 as a micro controller, to control the stepper motor, is also explained and justified. Each system was tested individually first before integrating them. Five tests were performed, namely the response time to activate the stepper motor, the human detection accuracy test, the precision of the ultrasonic sensor responsible for height control, the precision of the ultrasonic sensor responsible for motion control, and the stress analysis test of goods lift. The tests present coherent data, but limitations were still found during the testing phase and had to be readjusted before the final integration of both systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Other reviewers Bean Leaf Lesions Image Classification: A Robust Ensemble Deep Learning Approach MTU Analyzing for Data Centers Interconnected Using VxLAN AFAR-YOLO: An Adaptive YOLO Object Detection Framework A Decision Support Framework for Sustainable Waste Disposal Technology Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1