利用洗牌蛙跳算法管理分布式能源,优化智能微电网的环境和经济指标

Nadia Gouda, Hamed H. Aly
{"title":"利用洗牌蛙跳算法管理分布式能源,优化智能微电网的环境和经济指标","authors":"Nadia Gouda, Hamed H. Aly","doi":"10.1109/ICETSIS61505.2024.10459405","DOIUrl":null,"url":null,"abstract":"When employing renewable energy within a smart micro grid (SMG), the management of distributed energy resources (DER) plays a crucial role in optimizing practical objectives of SMG. This study utilizes the Shuffled frog leaping algorithm (SFLA) to manage DER and implement demand response programs (DSP), aiming to optimize economic, technical and environmental problems of SMG. The modeling of renewable energy resources (RES) is a challenge due to its uncertainty, therefore, cumulative distribution function (CDF) is used for predicting the energy sources before its integration with SMG. The DER included in this study consists of the wind and solar energy, battery, micro turbine and the utility. This model is implemented in three different scenarios: a) basic grid operation, b) operation with maximum usage of renewable energy resources, c) operation with maximum usage of RES and DRP. The results obtained show the superiority of proposed SFLA algorithm in terms of avoiding pre-mature convergence which is a common challenge in optimization, and achieving global optimum for the proposed objectives. For validation, this model is implemented in MAT LAB considering different constraints.","PeriodicalId":518932,"journal":{"name":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Energy Sources Management using Shuffled Frog-Leaping Algorithm for Optimizing the Environmental and Economic Indices of Smart Microgrid\",\"authors\":\"Nadia Gouda, Hamed H. Aly\",\"doi\":\"10.1109/ICETSIS61505.2024.10459405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When employing renewable energy within a smart micro grid (SMG), the management of distributed energy resources (DER) plays a crucial role in optimizing practical objectives of SMG. This study utilizes the Shuffled frog leaping algorithm (SFLA) to manage DER and implement demand response programs (DSP), aiming to optimize economic, technical and environmental problems of SMG. The modeling of renewable energy resources (RES) is a challenge due to its uncertainty, therefore, cumulative distribution function (CDF) is used for predicting the energy sources before its integration with SMG. The DER included in this study consists of the wind and solar energy, battery, micro turbine and the utility. This model is implemented in three different scenarios: a) basic grid operation, b) operation with maximum usage of renewable energy resources, c) operation with maximum usage of RES and DRP. The results obtained show the superiority of proposed SFLA algorithm in terms of avoiding pre-mature convergence which is a common challenge in optimization, and achieving global optimum for the proposed objectives. For validation, this model is implemented in MAT LAB considering different constraints.\",\"PeriodicalId\":518932,\"journal\":{\"name\":\"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETSIS61505.2024.10459405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSIS61505.2024.10459405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在智能微电网(SMG)中采用可再生能源时,分布式能源资源(DER)的管理对优化 SMG 的实际目标起着至关重要的作用。本研究利用洗牌蛙跃算法(SFLA)管理 DER 并实施需求响应计划(DSP),旨在优化 SMG 的经济、技术和环境问题。可再生能源(RES)的建模因其不确定性而面临挑战,因此,在将其与 SMG 集成之前,使用累积分布函数(CDF)对能源进行预测。本研究中的 DER 包括风能、太阳能、电池、微型涡轮机和公用事业。该模型在三种不同情况下实施:a) 基本电网运行;b) 最大限度利用可再生能源的运行;c) 最大限度利用可再生能源和 DRP 的运行。结果表明,所提出的 SFLA 算法在避免过早收敛(这是优化中的常见挑战)和实现所提目标的全局最优方面具有优势。为进行验证,考虑到不同的约束条件,在 MAT LAB 中实现了该模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Energy Sources Management using Shuffled Frog-Leaping Algorithm for Optimizing the Environmental and Economic Indices of Smart Microgrid
When employing renewable energy within a smart micro grid (SMG), the management of distributed energy resources (DER) plays a crucial role in optimizing practical objectives of SMG. This study utilizes the Shuffled frog leaping algorithm (SFLA) to manage DER and implement demand response programs (DSP), aiming to optimize economic, technical and environmental problems of SMG. The modeling of renewable energy resources (RES) is a challenge due to its uncertainty, therefore, cumulative distribution function (CDF) is used for predicting the energy sources before its integration with SMG. The DER included in this study consists of the wind and solar energy, battery, micro turbine and the utility. This model is implemented in three different scenarios: a) basic grid operation, b) operation with maximum usage of renewable energy resources, c) operation with maximum usage of RES and DRP. The results obtained show the superiority of proposed SFLA algorithm in terms of avoiding pre-mature convergence which is a common challenge in optimization, and achieving global optimum for the proposed objectives. For validation, this model is implemented in MAT LAB considering different constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Other reviewers Bean Leaf Lesions Image Classification: A Robust Ensemble Deep Learning Approach MTU Analyzing for Data Centers Interconnected Using VxLAN AFAR-YOLO: An Adaptive YOLO Object Detection Framework A Decision Support Framework for Sustainable Waste Disposal Technology Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1