利用灰狼优化-支持向量机,基于基因表达数据预测艾滋病患者的结核病病情

Hana Amani Fatihah, Hasmawati, I. Kurniawan
{"title":"利用灰狼优化-支持向量机,基于基因表达数据预测艾滋病患者的结核病病情","authors":"Hana Amani Fatihah, Hasmawati, I. Kurniawan","doi":"10.1109/ICETSIS61505.2024.10459618","DOIUrl":null,"url":null,"abstract":"The main cause of Tuberculosis (TB), a specific infectious disease that affects people worldwide, is Mycobacterium Tuberculosis (MTB). An estimated 30% of the population worldwide has a TB infection, which causes over 20 million deaths annually. Also, 37.7 million people are afflicted with HIV and TB together. Detecting TB in HIV patients is crucial due to the high risk associated with TB. To identify HIV-positive patients, RNA-based methods are used to find host gene expression signatures associated with different aspects of the disease. Nevertheless, no group in this method describes gene signatures that can be used to identify patients who are co-infected with TB and HIV. Therefore, a method is needed to identify TB in HIV patients. This study aims to classify high-dimensional micro array data using Grey Wolf Optimization (GWO) with Support Vector Machines (SVM). To improve the performance of the model, hyperparameter tuning was carried out. Based on the results, we obtained the optimal SVM model using a linear kernel that outperforms other kernels in terms of accuracy, with Fl-score values of 0.78 and 0.80, respectively.","PeriodicalId":518932,"journal":{"name":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","volume":"254 4","pages":"1848-1852"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Tuberculosis on HIV Patients Based on Gene Expression Data Using Grey Wolf Optimization-Support Vector Machine\",\"authors\":\"Hana Amani Fatihah, Hasmawati, I. Kurniawan\",\"doi\":\"10.1109/ICETSIS61505.2024.10459618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main cause of Tuberculosis (TB), a specific infectious disease that affects people worldwide, is Mycobacterium Tuberculosis (MTB). An estimated 30% of the population worldwide has a TB infection, which causes over 20 million deaths annually. Also, 37.7 million people are afflicted with HIV and TB together. Detecting TB in HIV patients is crucial due to the high risk associated with TB. To identify HIV-positive patients, RNA-based methods are used to find host gene expression signatures associated with different aspects of the disease. Nevertheless, no group in this method describes gene signatures that can be used to identify patients who are co-infected with TB and HIV. Therefore, a method is needed to identify TB in HIV patients. This study aims to classify high-dimensional micro array data using Grey Wolf Optimization (GWO) with Support Vector Machines (SVM). To improve the performance of the model, hyperparameter tuning was carried out. Based on the results, we obtained the optimal SVM model using a linear kernel that outperforms other kernels in terms of accuracy, with Fl-score values of 0.78 and 0.80, respectively.\",\"PeriodicalId\":518932,\"journal\":{\"name\":\"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)\",\"volume\":\"254 4\",\"pages\":\"1848-1852\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETSIS61505.2024.10459618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSIS61505.2024.10459618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结核病(TB)是一种影响全世界人民的特殊传染病,其主要病因是结核分枝杆菌(MTB)。据估计,全球有 30% 的人感染了结核病,每年造成 2 000 多万人死亡。此外,有 3770 万人同时患有艾滋病和结核病。由于与结核病相关的高风险,在艾滋病患者中检测结核病至关重要。为了识别 HIV 阳性患者,人们使用基于 RNA 的方法来寻找与疾病不同方面相关的宿主基因表达特征。然而,在这种方法中,没有一个小组描述了可用于识别结核病和艾滋病病毒双重感染患者的基因特征。因此,需要一种方法来识别艾滋病病毒感染者的结核病。本研究旨在使用灰狼优化(GWO)和支持向量机(SVM)对高维微阵列数据进行分类。为了提高模型的性能,我们进行了超参数调整。根据结果,我们得到了使用线性内核的最佳 SVM 模型,其准确性优于其他内核,Fl-score 值分别为 0.78 和 0.80。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Tuberculosis on HIV Patients Based on Gene Expression Data Using Grey Wolf Optimization-Support Vector Machine
The main cause of Tuberculosis (TB), a specific infectious disease that affects people worldwide, is Mycobacterium Tuberculosis (MTB). An estimated 30% of the population worldwide has a TB infection, which causes over 20 million deaths annually. Also, 37.7 million people are afflicted with HIV and TB together. Detecting TB in HIV patients is crucial due to the high risk associated with TB. To identify HIV-positive patients, RNA-based methods are used to find host gene expression signatures associated with different aspects of the disease. Nevertheless, no group in this method describes gene signatures that can be used to identify patients who are co-infected with TB and HIV. Therefore, a method is needed to identify TB in HIV patients. This study aims to classify high-dimensional micro array data using Grey Wolf Optimization (GWO) with Support Vector Machines (SVM). To improve the performance of the model, hyperparameter tuning was carried out. Based on the results, we obtained the optimal SVM model using a linear kernel that outperforms other kernels in terms of accuracy, with Fl-score values of 0.78 and 0.80, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Other reviewers Bean Leaf Lesions Image Classification: A Robust Ensemble Deep Learning Approach MTU Analyzing for Data Centers Interconnected Using VxLAN AFAR-YOLO: An Adaptive YOLO Object Detection Framework A Decision Support Framework for Sustainable Waste Disposal Technology Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1