基于异构图学习的优化感知预路由定时预测框架

Guoqing He, Wenjie Ding, Yuyang Ye, Xu Cheng, Qianqian Song, Peng Cao
{"title":"基于异构图学习的优化感知预路由定时预测框架","authors":"Guoqing He, Wenjie Ding, Yuyang Ye, Xu Cheng, Qianqian Song, Peng Cao","doi":"10.1109/ASP-DAC58780.2024.10473937","DOIUrl":null,"url":null,"abstract":"Accurate and efficient pre-routing timing estimation is particularly crucial in timing-driven placement, as design iterations caused by timing divergence are time-consuming. However, existing machine learning prediction models overlook the impact of timing optimization techniques during routing stage, such as adjusting gate sizes or swapping threshold voltage types to fix routing-induced timing violations. In this work, an optimization-aware pre-routing timing prediction framework based on heterogeneous graph learning is proposed to calibrate the timing changes introduced by wire parasitic and optimization techniques. The path embedding generated by the proposed framework fuses learned local information from graph neural network and global information from transformer network to perform accurate endpoint arrival time prediction. Experimental results demonstrate that the proposed framework achieves an average accuracy improvement of 0.10 in terms of R2 score on testing designs and brings average runtime acceleration of three orders of magnitude compared with the design flow.","PeriodicalId":518586,"journal":{"name":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"268 8","pages":"177-182"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimization-aware Pre-Routing Timing Prediction Framework Based on Heterogeneous Graph Learning\",\"authors\":\"Guoqing He, Wenjie Ding, Yuyang Ye, Xu Cheng, Qianqian Song, Peng Cao\",\"doi\":\"10.1109/ASP-DAC58780.2024.10473937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and efficient pre-routing timing estimation is particularly crucial in timing-driven placement, as design iterations caused by timing divergence are time-consuming. However, existing machine learning prediction models overlook the impact of timing optimization techniques during routing stage, such as adjusting gate sizes or swapping threshold voltage types to fix routing-induced timing violations. In this work, an optimization-aware pre-routing timing prediction framework based on heterogeneous graph learning is proposed to calibrate the timing changes introduced by wire parasitic and optimization techniques. The path embedding generated by the proposed framework fuses learned local information from graph neural network and global information from transformer network to perform accurate endpoint arrival time prediction. Experimental results demonstrate that the proposed framework achieves an average accuracy improvement of 0.10 in terms of R2 score on testing designs and brings average runtime acceleration of three orders of magnitude compared with the design flow.\",\"PeriodicalId\":518586,\"journal\":{\"name\":\"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"268 8\",\"pages\":\"177-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC58780.2024.10473937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC58780.2024.10473937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确高效的布线前时序估计在时序驱动布局中尤为重要,因为时序偏差导致的设计迭代非常耗时。然而,现有的机器学习预测模型忽略了布线阶段时序优化技术的影响,例如调整栅极尺寸或交换阈值电压类型,以解决布线引起的时序违规问题。在这项工作中,提出了一种基于异构图学习的优化感知预路由时序预测框架,以校准导线寄生和优化技术带来的时序变化。所提框架生成的路径嵌入融合了图神经网络的局部信息和变压器网络的全局信息,能准确预测端点到达时间。实验结果表明,与设计流程相比,拟议框架在测试设计的 R2 分数方面实现了 0.10 的平均精度提升,并带来了三个数量级的平均运行时间加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Optimization-aware Pre-Routing Timing Prediction Framework Based on Heterogeneous Graph Learning
Accurate and efficient pre-routing timing estimation is particularly crucial in timing-driven placement, as design iterations caused by timing divergence are time-consuming. However, existing machine learning prediction models overlook the impact of timing optimization techniques during routing stage, such as adjusting gate sizes or swapping threshold voltage types to fix routing-induced timing violations. In this work, an optimization-aware pre-routing timing prediction framework based on heterogeneous graph learning is proposed to calibrate the timing changes introduced by wire parasitic and optimization techniques. The path embedding generated by the proposed framework fuses learned local information from graph neural network and global information from transformer network to perform accurate endpoint arrival time prediction. Experimental results demonstrate that the proposed framework achieves an average accuracy improvement of 0.10 in terms of R2 score on testing designs and brings average runtime acceleration of three orders of magnitude compared with the design flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SPIRAL: Signal-Power Integrity Co-Analysis for High-Speed Inter-Chiplet Serial Links Validation A Resource-efficient Task Scheduling System using Reinforcement Learning : Invited Paper Toward End-to-End Analog Design Automation with ML and Data-Driven Approaches (Invited Paper) A Cross-layer Framework for Design Space and Variation Analysis of Non-Volatile Ferroelectric Capacitor-Based Compute-in-Memory Accelerators A High Performance Detailed Router Based on Integer Programming with Adaptive Route Guides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1