利用溶解气体分析进行基于机器学习的故障预测,提高电力变压器的可靠性

Gayatri S. Patil, Uma S. Patil, Priyanka P. Shinde
{"title":"利用溶解气体分析进行基于机器学习的故障预测,提高电力变压器的可靠性","authors":"Gayatri S. Patil, Uma S. Patil, Priyanka P. Shinde","doi":"10.1109/ICPC2T60072.2024.10474728","DOIUrl":null,"url":null,"abstract":"The global energy sector operates within a highly competitive market, necessitating uninterrupted power supply to industrial, commercial, and domestic sectors. Transformers serve a critical role in electricity transmission, emphasizing the importance of maintaining their performance to minimize losses. Dissolved Gas Analysis (DGA) emerges as a pivotal tool for monitoring transformer performance and identifying fault types in oil-immersed transformers. Despite the existence of several conventional DGA interpretation techniques, their accuracy has been subpar. This research paper presents a novel machine learning(ML) approach for predicting power transformer faults using DGA data. The proposed method leverages DGA samples sourced from the IEEE data port to train and test various machine learning models within the WEKA platform.","PeriodicalId":518382,"journal":{"name":"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)","volume":"2 4","pages":"72-76"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Power Transformer Reliability through Machine Learning-Based Fault Prediction Using Dissolved Gas Analysis\",\"authors\":\"Gayatri S. Patil, Uma S. Patil, Priyanka P. Shinde\",\"doi\":\"10.1109/ICPC2T60072.2024.10474728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global energy sector operates within a highly competitive market, necessitating uninterrupted power supply to industrial, commercial, and domestic sectors. Transformers serve a critical role in electricity transmission, emphasizing the importance of maintaining their performance to minimize losses. Dissolved Gas Analysis (DGA) emerges as a pivotal tool for monitoring transformer performance and identifying fault types in oil-immersed transformers. Despite the existence of several conventional DGA interpretation techniques, their accuracy has been subpar. This research paper presents a novel machine learning(ML) approach for predicting power transformer faults using DGA data. The proposed method leverages DGA samples sourced from the IEEE data port to train and test various machine learning models within the WEKA platform.\",\"PeriodicalId\":518382,\"journal\":{\"name\":\"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)\",\"volume\":\"2 4\",\"pages\":\"72-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPC2T60072.2024.10474728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPC2T60072.2024.10474728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球能源行业在高度竞争的市场中运作,需要为工业、商业和家庭部门提供不间断的电力供应。变压器在电力传输中起着至关重要的作用,这就强调了保持变压器性能以尽量减少损耗的重要性。溶解气体分析(DGA)是监测变压器性能和识别油浸式变压器故障类型的重要工具。尽管存在几种传统的 DGA 分析技术,但其准确性一直不高。本研究论文提出了一种利用 DGA 数据预测电力变压器故障的新型机器学习(ML)方法。该方法利用从 IEEE 数据端口获取的 DGA 样本,在 WEKA 平台上训练和测试各种机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Power Transformer Reliability through Machine Learning-Based Fault Prediction Using Dissolved Gas Analysis
The global energy sector operates within a highly competitive market, necessitating uninterrupted power supply to industrial, commercial, and domestic sectors. Transformers serve a critical role in electricity transmission, emphasizing the importance of maintaining their performance to minimize losses. Dissolved Gas Analysis (DGA) emerges as a pivotal tool for monitoring transformer performance and identifying fault types in oil-immersed transformers. Despite the existence of several conventional DGA interpretation techniques, their accuracy has been subpar. This research paper presents a novel machine learning(ML) approach for predicting power transformer faults using DGA data. The proposed method leverages DGA samples sourced from the IEEE data port to train and test various machine learning models within the WEKA platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time Solar Power Optimization and Energy Monitoring System with Maximum Power Point Tracking V2V Charging and Solar Integration to Overcome Range Anxiety in Electric Vehicles Voltage Stability Enhancement for EV Stations: An Optimal Mechanism Utilizing a Smart Solar Inverter Revolutionizing Fault Prediction in MetroPT Datasets: Enhanced Diagnosis and Efficient Failure Prediction through Innovative Data Refinement A New Common Ground Single-Phase Transformerless Five-Level Inverter for Photovoltaic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1