MLOps FMEA:减轻故障并确保机器学习运营成功的积极主动的结构化方法

Abhishek Paul, Roderick Y. Son, Shiv A. Balodi, K. Crooks
{"title":"MLOps FMEA:减轻故障并确保机器学习运营成功的积极主动的结构化方法","authors":"Abhishek Paul, Roderick Y. Son, Shiv A. Balodi, K. Crooks","doi":"10.1109/RAMS51492.2024.10457600","DOIUrl":null,"url":null,"abstract":"Machine learning applications have seen an exponential rise in prevalence across many different industries including healthcare, banking, manufacturing, and defense. While there is a lot of potential for machine learning applications, successful development and productionization is not assured. To prevent failures and ensure success, a Machine Learning Operations (MLOps) Failure Modes and Effects Analysis (FMEA) is proposed as a proactive structured approach for risk identification and mitigation.","PeriodicalId":518362,"journal":{"name":"2024 Annual Reliability and Maintainability Symposium (RAMS)","volume":"2 9","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MLOps FMEA: A Proactive & Structured Approach to Mitigate Failures and Ensure Success for Machine Learning Operations\",\"authors\":\"Abhishek Paul, Roderick Y. Son, Shiv A. Balodi, K. Crooks\",\"doi\":\"10.1109/RAMS51492.2024.10457600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning applications have seen an exponential rise in prevalence across many different industries including healthcare, banking, manufacturing, and defense. While there is a lot of potential for machine learning applications, successful development and productionization is not assured. To prevent failures and ensure success, a Machine Learning Operations (MLOps) Failure Modes and Effects Analysis (FMEA) is proposed as a proactive structured approach for risk identification and mitigation.\",\"PeriodicalId\":518362,\"journal\":{\"name\":\"2024 Annual Reliability and Maintainability Symposium (RAMS)\",\"volume\":\"2 9\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 Annual Reliability and Maintainability Symposium (RAMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS51492.2024.10457600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 Annual Reliability and Maintainability Symposium (RAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS51492.2024.10457600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习应用在医疗保健、银行、制造和国防等多个行业的普及率呈指数级增长。虽然机器学习应用潜力巨大,但并不能确保成功开发和生产。为了防止失败并确保成功,我们提出了机器学习操作(MLOps)故障模式和影响分析(FMEA),作为一种积极主动的结构化风险识别和缓解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MLOps FMEA: A Proactive & Structured Approach to Mitigate Failures and Ensure Success for Machine Learning Operations
Machine learning applications have seen an exponential rise in prevalence across many different industries including healthcare, banking, manufacturing, and defense. While there is a lot of potential for machine learning applications, successful development and productionization is not assured. To prevent failures and ensure success, a Machine Learning Operations (MLOps) Failure Modes and Effects Analysis (FMEA) is proposed as a proactive structured approach for risk identification and mitigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do Bayesian Neural Networks Weapon System Improve Predictive Maintenance? Measures and Metrics of ML Data and Models to Assure Reliable and Safe Systems Estimating Multi-Phase Life Cycle Reliability by Combining Failure Rate Adjustments into Duty Cycle An Automated Performance Evaluation of the Newborn Life Support Procedure Maximum Likelihood Estimation with the Two-Parameter Exponential Model and Interval-Censored Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1