{"title":"基于集合的特征工程机制,解码大脑信号中的想象语音","authors":"Uzair Shah, Mahmood Alzubaidi, Farida Mohsen, Tanvir Alam, Mowafa Househ","doi":"10.1016/j.imu.2024.101491","DOIUrl":null,"url":null,"abstract":"<div><p>Speech impairments, resulting from brain injuries, mental disorders, or vocal abuse, substantially affect an individual’s quality of life and can lead to social isolation. Brain–Computer Interfaces (BCIs), particularly those based on EEG, offer a promising support mechanism by harnessing brain signals. Owing to their clinical efficacy, cost-effective EEG devices, and expanding applications in the medical and social spheres, their usage has surged. This study introduces an ensemble-based feature engineering mechanism to pinpoint the optimal brain rhythm, channel subset, and feature set for accurately predicting imagined words from EEG signals via machine learning models. Leveraging the 2020 International BCI competition dataset, we employed bandpass filtering, channel wrapping, and ranking methods were applied to discern suitable brain rhythms and features associated with imagined speech. Subsequent application of kernel-based principal component analysis enabled us to compress the feature space dimensionality. We then trained various machine learning models, among which the kNN model excelled, achieving an average accuracy of 73% in a 10-fold cross-validation scheme ,surpassing 18% higher than the existing literature. The Gamma rhythm was identified as the most predictive of imagined speech from EEG brain signals. These advancements herald a new era of more precise and effective BCIs, poised to significantly improve the lives of those with speech impairments.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"47 ","pages":"Article 101491"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824000479/pdfft?md5=b7426fcd2dc0c80cde42c9585f90d202&pid=1-s2.0-S2352914824000479-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ensemble-based feature engineering mechanism to decode imagined speech from brain signals\",\"authors\":\"Uzair Shah, Mahmood Alzubaidi, Farida Mohsen, Tanvir Alam, Mowafa Househ\",\"doi\":\"10.1016/j.imu.2024.101491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Speech impairments, resulting from brain injuries, mental disorders, or vocal abuse, substantially affect an individual’s quality of life and can lead to social isolation. Brain–Computer Interfaces (BCIs), particularly those based on EEG, offer a promising support mechanism by harnessing brain signals. Owing to their clinical efficacy, cost-effective EEG devices, and expanding applications in the medical and social spheres, their usage has surged. This study introduces an ensemble-based feature engineering mechanism to pinpoint the optimal brain rhythm, channel subset, and feature set for accurately predicting imagined words from EEG signals via machine learning models. Leveraging the 2020 International BCI competition dataset, we employed bandpass filtering, channel wrapping, and ranking methods were applied to discern suitable brain rhythms and features associated with imagined speech. Subsequent application of kernel-based principal component analysis enabled us to compress the feature space dimensionality. We then trained various machine learning models, among which the kNN model excelled, achieving an average accuracy of 73% in a 10-fold cross-validation scheme ,surpassing 18% higher than the existing literature. The Gamma rhythm was identified as the most predictive of imagined speech from EEG brain signals. These advancements herald a new era of more precise and effective BCIs, poised to significantly improve the lives of those with speech impairments.</p></div>\",\"PeriodicalId\":13953,\"journal\":{\"name\":\"Informatics in Medicine Unlocked\",\"volume\":\"47 \",\"pages\":\"Article 101491\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352914824000479/pdfft?md5=b7426fcd2dc0c80cde42c9585f90d202&pid=1-s2.0-S2352914824000479-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Medicine Unlocked\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352914824000479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824000479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Ensemble-based feature engineering mechanism to decode imagined speech from brain signals
Speech impairments, resulting from brain injuries, mental disorders, or vocal abuse, substantially affect an individual’s quality of life and can lead to social isolation. Brain–Computer Interfaces (BCIs), particularly those based on EEG, offer a promising support mechanism by harnessing brain signals. Owing to their clinical efficacy, cost-effective EEG devices, and expanding applications in the medical and social spheres, their usage has surged. This study introduces an ensemble-based feature engineering mechanism to pinpoint the optimal brain rhythm, channel subset, and feature set for accurately predicting imagined words from EEG signals via machine learning models. Leveraging the 2020 International BCI competition dataset, we employed bandpass filtering, channel wrapping, and ranking methods were applied to discern suitable brain rhythms and features associated with imagined speech. Subsequent application of kernel-based principal component analysis enabled us to compress the feature space dimensionality. We then trained various machine learning models, among which the kNN model excelled, achieving an average accuracy of 73% in a 10-fold cross-validation scheme ,surpassing 18% higher than the existing literature. The Gamma rhythm was identified as the most predictive of imagined speech from EEG brain signals. These advancements herald a new era of more precise and effective BCIs, poised to significantly improve the lives of those with speech impairments.
期刊介绍:
Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.