基于集合的特征工程机制,解码大脑信号中的想象语音

Uzair Shah, Mahmood Alzubaidi, Farida Mohsen, Tanvir Alam, Mowafa Househ
{"title":"基于集合的特征工程机制,解码大脑信号中的想象语音","authors":"Uzair Shah,&nbsp;Mahmood Alzubaidi,&nbsp;Farida Mohsen,&nbsp;Tanvir Alam,&nbsp;Mowafa Househ","doi":"10.1016/j.imu.2024.101491","DOIUrl":null,"url":null,"abstract":"<div><p>Speech impairments, resulting from brain injuries, mental disorders, or vocal abuse, substantially affect an individual’s quality of life and can lead to social isolation. Brain–Computer Interfaces (BCIs), particularly those based on EEG, offer a promising support mechanism by harnessing brain signals. Owing to their clinical efficacy, cost-effective EEG devices, and expanding applications in the medical and social spheres, their usage has surged. This study introduces an ensemble-based feature engineering mechanism to pinpoint the optimal brain rhythm, channel subset, and feature set for accurately predicting imagined words from EEG signals via machine learning models. Leveraging the 2020 International BCI competition dataset, we employed bandpass filtering, channel wrapping, and ranking methods were applied to discern suitable brain rhythms and features associated with imagined speech. Subsequent application of kernel-based principal component analysis enabled us to compress the feature space dimensionality. We then trained various machine learning models, among which the kNN model excelled, achieving an average accuracy of 73% in a 10-fold cross-validation scheme ,surpassing 18% higher than the existing literature. The Gamma rhythm was identified as the most predictive of imagined speech from EEG brain signals. These advancements herald a new era of more precise and effective BCIs, poised to significantly improve the lives of those with speech impairments.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"47 ","pages":"Article 101491"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824000479/pdfft?md5=b7426fcd2dc0c80cde42c9585f90d202&pid=1-s2.0-S2352914824000479-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ensemble-based feature engineering mechanism to decode imagined speech from brain signals\",\"authors\":\"Uzair Shah,&nbsp;Mahmood Alzubaidi,&nbsp;Farida Mohsen,&nbsp;Tanvir Alam,&nbsp;Mowafa Househ\",\"doi\":\"10.1016/j.imu.2024.101491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Speech impairments, resulting from brain injuries, mental disorders, or vocal abuse, substantially affect an individual’s quality of life and can lead to social isolation. Brain–Computer Interfaces (BCIs), particularly those based on EEG, offer a promising support mechanism by harnessing brain signals. Owing to their clinical efficacy, cost-effective EEG devices, and expanding applications in the medical and social spheres, their usage has surged. This study introduces an ensemble-based feature engineering mechanism to pinpoint the optimal brain rhythm, channel subset, and feature set for accurately predicting imagined words from EEG signals via machine learning models. Leveraging the 2020 International BCI competition dataset, we employed bandpass filtering, channel wrapping, and ranking methods were applied to discern suitable brain rhythms and features associated with imagined speech. Subsequent application of kernel-based principal component analysis enabled us to compress the feature space dimensionality. We then trained various machine learning models, among which the kNN model excelled, achieving an average accuracy of 73% in a 10-fold cross-validation scheme ,surpassing 18% higher than the existing literature. The Gamma rhythm was identified as the most predictive of imagined speech from EEG brain signals. These advancements herald a new era of more precise and effective BCIs, poised to significantly improve the lives of those with speech impairments.</p></div>\",\"PeriodicalId\":13953,\"journal\":{\"name\":\"Informatics in Medicine Unlocked\",\"volume\":\"47 \",\"pages\":\"Article 101491\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352914824000479/pdfft?md5=b7426fcd2dc0c80cde42c9585f90d202&pid=1-s2.0-S2352914824000479-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Medicine Unlocked\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352914824000479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824000479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

因脑损伤、精神障碍或滥用发声而造成的语言障碍会严重影响个人的生活质量,并可能导致社交孤立。脑机接口(BCI),尤其是基于脑电图的脑机接口,通过利用大脑信号提供了一种前景广阔的支持机制。由于其临床疗效、脑电图设备的成本效益以及在医疗和社会领域的应用不断扩大,其使用量激增。本研究介绍了一种基于集合的特征工程机制,通过机器学习模型确定最佳脑节奏、信道子集和特征集,从而准确预测脑电信号中的想象词。利用2020年国际BCI竞赛数据集,我们采用了带通滤波、通道包装和排序方法来识别与想象中的语音相关的合适大脑节奏和特征。随后应用基于核的主成分分析,使我们能够压缩特征空间的维度。然后,我们训练了各种机器学习模型,其中 kNN 模型表现出色,在 10 倍交叉验证方案中取得了 73% 的平均准确率,比现有文献高出 18%。伽马节律被认为是脑电图信号中最能预测想象语音的节律。这些进展预示着一个更精确、更有效的生物识别(BCI)新时代的到来,有望显著改善语言障碍患者的生活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble-based feature engineering mechanism to decode imagined speech from brain signals

Speech impairments, resulting from brain injuries, mental disorders, or vocal abuse, substantially affect an individual’s quality of life and can lead to social isolation. Brain–Computer Interfaces (BCIs), particularly those based on EEG, offer a promising support mechanism by harnessing brain signals. Owing to their clinical efficacy, cost-effective EEG devices, and expanding applications in the medical and social spheres, their usage has surged. This study introduces an ensemble-based feature engineering mechanism to pinpoint the optimal brain rhythm, channel subset, and feature set for accurately predicting imagined words from EEG signals via machine learning models. Leveraging the 2020 International BCI competition dataset, we employed bandpass filtering, channel wrapping, and ranking methods were applied to discern suitable brain rhythms and features associated with imagined speech. Subsequent application of kernel-based principal component analysis enabled us to compress the feature space dimensionality. We then trained various machine learning models, among which the kNN model excelled, achieving an average accuracy of 73% in a 10-fold cross-validation scheme ,surpassing 18% higher than the existing literature. The Gamma rhythm was identified as the most predictive of imagined speech from EEG brain signals. These advancements herald a new era of more precise and effective BCIs, poised to significantly improve the lives of those with speech impairments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
期刊最新文献
Usability and accessibility in mHealth stroke apps: An empirical assessment Spatiotemporal chest wall movement analysis using depth sensor imaging for detecting respiratory asynchrony Regression and classification of Windkessel parameters from non-invasive cardiovascular quantities using a fully connected neural network Patient2Trial: From patient to participant in clinical trials using large language models Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1