Yuanyu Li, Jing Hu, Chenghui Li* and Xiandeng Hou*,
{"title":"用于高效固相萃取铀的磁性共价有机框架,可通过便携式 X 射线荧光光谱仪进行现场测定","authors":"Yuanyu Li, Jing Hu, Chenghui Li* and Xiandeng Hou*, ","doi":"10.1021/acs.analchem.4c00063","DOIUrl":null,"url":null,"abstract":"<p >Uranium plays a pivotal role in the nuclear industry; however, its inadvertent release has raised concerns regarding health and environmental implications. It is crucial for a prompt warning and accurate tracing of uranium contamination in emergency scenarios. In this study, a novel and simple method was proposed that combines magnetic dispersive solid-phase extraction (MDSPE) with portable X-ray fluorescence spectrometry (XRF) for the on-site sampling and determination of trace uranium in real samples. A magnetic covalent organic framework (Fe<sub>3</sub>O<sub>4</sub>@COF) composite with excellent chemical stability and a large adsorption capacity of 311 mg/g was synthesized and employed as an efficient adsorbent for the solid-phase extraction of trace uranium. Without the need for a centrifuge or filter requirement, the established method by benchtop wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) exhibits an exceptionally low limit of detection (LOD) of 0.008 μg/L with a sample volume of 50 mL and a fast adsorption time of 15 min, rendering it suitable for environmental monitoring of UO<sub>2</sub><sup>2+</sup>. Consequently, this approach, in combination with a hand-held portable XRF instrument with an LOD of 0.1 μg/L, was successfully implemented for the on-site extraction and quality assessment of real water samples, yielding accurate results and satisfactory spike recoveries.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Covalent Organic Framework for Efficient Solid-Phase Extraction of Uranium for on-Site Determination by Portable X-ray Fluorescence Spectrometry\",\"authors\":\"Yuanyu Li, Jing Hu, Chenghui Li* and Xiandeng Hou*, \",\"doi\":\"10.1021/acs.analchem.4c00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Uranium plays a pivotal role in the nuclear industry; however, its inadvertent release has raised concerns regarding health and environmental implications. It is crucial for a prompt warning and accurate tracing of uranium contamination in emergency scenarios. In this study, a novel and simple method was proposed that combines magnetic dispersive solid-phase extraction (MDSPE) with portable X-ray fluorescence spectrometry (XRF) for the on-site sampling and determination of trace uranium in real samples. A magnetic covalent organic framework (Fe<sub>3</sub>O<sub>4</sub>@COF) composite with excellent chemical stability and a large adsorption capacity of 311 mg/g was synthesized and employed as an efficient adsorbent for the solid-phase extraction of trace uranium. Without the need for a centrifuge or filter requirement, the established method by benchtop wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) exhibits an exceptionally low limit of detection (LOD) of 0.008 μg/L with a sample volume of 50 mL and a fast adsorption time of 15 min, rendering it suitable for environmental monitoring of UO<sub>2</sub><sup>2+</sup>. Consequently, this approach, in combination with a hand-held portable XRF instrument with an LOD of 0.1 μg/L, was successfully implemented for the on-site extraction and quality assessment of real water samples, yielding accurate results and satisfactory spike recoveries.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.4c00063\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c00063","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Magnetic Covalent Organic Framework for Efficient Solid-Phase Extraction of Uranium for on-Site Determination by Portable X-ray Fluorescence Spectrometry
Uranium plays a pivotal role in the nuclear industry; however, its inadvertent release has raised concerns regarding health and environmental implications. It is crucial for a prompt warning and accurate tracing of uranium contamination in emergency scenarios. In this study, a novel and simple method was proposed that combines magnetic dispersive solid-phase extraction (MDSPE) with portable X-ray fluorescence spectrometry (XRF) for the on-site sampling and determination of trace uranium in real samples. A magnetic covalent organic framework (Fe3O4@COF) composite with excellent chemical stability and a large adsorption capacity of 311 mg/g was synthesized and employed as an efficient adsorbent for the solid-phase extraction of trace uranium. Without the need for a centrifuge or filter requirement, the established method by benchtop wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) exhibits an exceptionally low limit of detection (LOD) of 0.008 μg/L with a sample volume of 50 mL and a fast adsorption time of 15 min, rendering it suitable for environmental monitoring of UO22+. Consequently, this approach, in combination with a hand-held portable XRF instrument with an LOD of 0.1 μg/L, was successfully implemented for the on-site extraction and quality assessment of real water samples, yielding accurate results and satisfactory spike recoveries.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.