通用框架中的全局关联顶点对

IF 1 2区 数学 Q1 MATHEMATICS Combinatorica Pub Date : 2024-04-08 DOI:10.1007/s00493-024-00094-3
Tibor Jordán, Soma Villányi
{"title":"通用框架中的全局关联顶点对","authors":"Tibor Jordán, Soma Villányi","doi":"10.1007/s00493-024-00094-3","DOIUrl":null,"url":null,"abstract":"<p>A <i>d</i>-dimensional framework is a pair (<i>G</i>, <i>p</i>), where <span>\\(G=(V,E)\\)</span> is a graph and <i>p</i> is a map from <i>V</i> to <span>\\({\\mathbb {R}}^d\\)</span>. The length of an edge <span>\\(xy\\in E\\)</span> in (<i>G</i>, <i>p</i>) is the distance between <i>p</i>(<i>x</i>) and <i>p</i>(<i>y</i>). A vertex pair <span>\\(\\{u,v\\}\\)</span> of <i>G</i> is said to be globally linked in (<i>G</i>, <i>p</i>) if the distance between <i>p</i>(<i>u</i>) and <i>p</i>(<i>v</i>) is equal to the distance between <i>q</i>(<i>u</i>) and <i>q</i>(<i>v</i>) for every <i>d</i>-dimensional framework (<i>G</i>, <i>q</i>) in which the corresponding edge lengths are the same as in (<i>G</i>, <i>p</i>). We call (<i>G</i>, <i>p</i>) globally rigid in <span>\\({\\mathbb {R}}^d\\)</span> when each vertex pair of <i>G</i> is globally linked in (<i>G</i>, <i>p</i>). A pair <span>\\(\\{u,v\\}\\)</span> of vertices of <i>G</i> is said to be weakly globally linked in <i>G</i> in <span>\\({\\mathbb {R}}^d\\)</span> if there exists a generic framework (<i>G</i>, <i>p</i>) in which <span>\\(\\{u,v\\}\\)</span> is globally linked. In this paper we first give a sufficient condition for the weak global linkedness of a vertex pair of a <span>\\((d+1)\\)</span>-connected graph <i>G</i> in <span>\\({\\mathbb {R}}^d\\)</span> and then show that for <span>\\(d=2\\)</span> it is also necessary. We use this result to obtain a complete characterization of weakly globally linked pairs in graphs in <span>\\({\\mathbb {R}}^2\\)</span>, which gives rise to an algorithm for testing weak global linkedness in the plane in <span>\\(O(|V|^2)\\)</span> time. Our methods lead to a new short proof for the characterization of globally rigid graphs in <span>\\({\\mathbb {R}}^2\\)</span>, and further results on weakly globally linked pairs and globally rigid graphs in the plane and in higher dimensions.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Globally Linked Pairs of Vertices in Generic Frameworks\",\"authors\":\"Tibor Jordán, Soma Villányi\",\"doi\":\"10.1007/s00493-024-00094-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>d</i>-dimensional framework is a pair (<i>G</i>, <i>p</i>), where <span>\\\\(G=(V,E)\\\\)</span> is a graph and <i>p</i> is a map from <i>V</i> to <span>\\\\({\\\\mathbb {R}}^d\\\\)</span>. The length of an edge <span>\\\\(xy\\\\in E\\\\)</span> in (<i>G</i>, <i>p</i>) is the distance between <i>p</i>(<i>x</i>) and <i>p</i>(<i>y</i>). A vertex pair <span>\\\\(\\\\{u,v\\\\}\\\\)</span> of <i>G</i> is said to be globally linked in (<i>G</i>, <i>p</i>) if the distance between <i>p</i>(<i>u</i>) and <i>p</i>(<i>v</i>) is equal to the distance between <i>q</i>(<i>u</i>) and <i>q</i>(<i>v</i>) for every <i>d</i>-dimensional framework (<i>G</i>, <i>q</i>) in which the corresponding edge lengths are the same as in (<i>G</i>, <i>p</i>). We call (<i>G</i>, <i>p</i>) globally rigid in <span>\\\\({\\\\mathbb {R}}^d\\\\)</span> when each vertex pair of <i>G</i> is globally linked in (<i>G</i>, <i>p</i>). A pair <span>\\\\(\\\\{u,v\\\\}\\\\)</span> of vertices of <i>G</i> is said to be weakly globally linked in <i>G</i> in <span>\\\\({\\\\mathbb {R}}^d\\\\)</span> if there exists a generic framework (<i>G</i>, <i>p</i>) in which <span>\\\\(\\\\{u,v\\\\}\\\\)</span> is globally linked. In this paper we first give a sufficient condition for the weak global linkedness of a vertex pair of a <span>\\\\((d+1)\\\\)</span>-connected graph <i>G</i> in <span>\\\\({\\\\mathbb {R}}^d\\\\)</span> and then show that for <span>\\\\(d=2\\\\)</span> it is also necessary. We use this result to obtain a complete characterization of weakly globally linked pairs in graphs in <span>\\\\({\\\\mathbb {R}}^2\\\\)</span>, which gives rise to an algorithm for testing weak global linkedness in the plane in <span>\\\\(O(|V|^2)\\\\)</span> time. Our methods lead to a new short proof for the characterization of globally rigid graphs in <span>\\\\({\\\\mathbb {R}}^2\\\\)</span>, and further results on weakly globally linked pairs and globally rigid graphs in the plane and in higher dimensions.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00094-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00094-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个 d 维框架是一对(G, p),其中 \(G=(V,E)\) 是一个图,p 是一个从 V 到 \({\mathbb {R}}^d\) 的映射。在(G, p)中,边(xy/in E\ )的长度是 p(x) 和 p(y) 之间的距离。如果在每一个 d 维框架(G, q)中,p(u) 和 p(v) 之间的距离等于 q(u) 和 q(v) 之间的距离,且对应的边长与(G, p)中的相同,则称 G 的一对顶点 \(\{u,v\}\)在(G, p)中是全局链接的。当 G 的每一对顶点在 (G, p) 中都是全局链接时,我们称 (G, p) 在 \({\mathbb {R}}^d\) 中是全局刚性的。如果存在一个通用框架(G, p),其中的 \(\{u,v\}\)是全局链接的,那么就可以说 G 的一对顶点在 \({\mathbb {R}^d\) 中是弱全局链接的。在本文中,我们首先给出了在\({\mathbb {R}}^d\) 中一个\((d+1)\)连接图 G 的顶点对的弱全局连接性的充分条件,然后证明了对于\(d=2\)来说,这也是必要条件。我们利用这一结果得到了在\({\mathbb {R}}^2\) 中的图中弱全局连接对的完整表征,从而产生了一种在 \(O(|V|^2)\) 时间内测试平面中弱全局连接性的算法。我们的方法为全局刚性图在\({\mathbb {R}}^2\) 中的表征提供了一个新的简短证明,并进一步得出了平面和更高维度中弱全局链接对和全局刚性图的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Globally Linked Pairs of Vertices in Generic Frameworks

A d-dimensional framework is a pair (Gp), where \(G=(V,E)\) is a graph and p is a map from V to \({\mathbb {R}}^d\). The length of an edge \(xy\in E\) in (Gp) is the distance between p(x) and p(y). A vertex pair \(\{u,v\}\) of G is said to be globally linked in (Gp) if the distance between p(u) and p(v) is equal to the distance between q(u) and q(v) for every d-dimensional framework (Gq) in which the corresponding edge lengths are the same as in (Gp). We call (Gp) globally rigid in \({\mathbb {R}}^d\) when each vertex pair of G is globally linked in (Gp). A pair \(\{u,v\}\) of vertices of G is said to be weakly globally linked in G in \({\mathbb {R}}^d\) if there exists a generic framework (Gp) in which \(\{u,v\}\) is globally linked. In this paper we first give a sufficient condition for the weak global linkedness of a vertex pair of a \((d+1)\)-connected graph G in \({\mathbb {R}}^d\) and then show that for \(d=2\) it is also necessary. We use this result to obtain a complete characterization of weakly globally linked pairs in graphs in \({\mathbb {R}}^2\), which gives rise to an algorithm for testing weak global linkedness in the plane in \(O(|V|^2)\) time. Our methods lead to a new short proof for the characterization of globally rigid graphs in \({\mathbb {R}}^2\), and further results on weakly globally linked pairs and globally rigid graphs in the plane and in higher dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
期刊最新文献
Constructing New Geometries: A Generalized Approach to Halving for Hypertopes Uniacute Spherical Codes How Balanced Can Permutations Be? The Number of Colorings of the Middle Layers of the Hamming Cube Chiral Extensions of Regular Toroids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1