通过第一原理模拟探索二维富勒烯网络中掺杂 BN 的影响

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL FlatChem Pub Date : 2024-04-06 DOI:10.1016/j.flatc.2024.100655
Vivek K. Yadav
{"title":"通过第一原理模拟探索二维富勒烯网络中掺杂 BN 的影响","authors":"Vivek K. Yadav","doi":"10.1016/j.flatc.2024.100655","DOIUrl":null,"url":null,"abstract":"<div><p>The doping of lighter non-metals like boron and nitrogen into fullerene <span><math><mrow><mfenced><mrow><msub><mi>C</mi><mn>60</mn></msub></mrow></mfenced></mrow></math></span> represents a promising advancement in the field of nanoelectronic devices. These doped two-dimensional (2D) materials offer improved stability and enhanced adsorption characteristics compared to pure form. Notably, It displays semiconducting behaviour, resulting in higher conductivity and carrier mobility. This study investigates the structural, electronic, optical, and conductivity/carrier transport properties of 2D polymer sheets made of fullerene, both with and without boron and nitrogen doping. We employ density functional theory (DFT) with PBE and HSE functionals, considering the inclusion of van der Waals (vdW) interactions. The research findings indicate that the <span><math><mrow><mn>2</mn><mi>D</mi></mrow></math></span> sheets of <span><math><mrow><msub><mi>C</mi><mn>60</mn></msub><mo>,</mo><msub><mi>C</mi><mn>58</mn></msub><msub><mi>B</mi><mn>1</mn></msub><msub><mi>N</mi><mn>1</mn></msub></mrow></math></span>, and <span><math><mrow><msub><mi>C</mi><mn>54</mn></msub><msub><mi>B</mi><mn>3</mn></msub><msub><mi>N</mi><mn>3</mn></msub></mrow></math></span> exhibit band gaps of approximately <span><math><mrow><mn>0.97</mn><mi>e</mi><mi>V</mi><mo>(</mo><mn>1.51</mn><mi>e</mi><mi>V</mi><mo>)</mo><mo>,</mo><mn>1.08</mn><mi>e</mi><mi>V</mi><mo>(</mo><mn>1.65</mn><mi>e</mi><mi>V</mi><mo>)</mo></mrow></math></span>, and <span><math><mrow><mn>1.05</mn><mi>e</mi><mi>V</mi><mo>(</mo><mn>1.56</mn><mi>e</mi><mi>V</mi><mo>)</mo></mrow></math></span>, respectively, as obtained from PBE (HSE) calculations. Moreover, according to the deformation potential theory, <span><math><mrow><msub><mi>C</mi><mn>58</mn></msub><msub><mi>B</mi><mn>1</mn></msub><msub><mi>N</mi><mn>1</mn></msub></mrow></math></span> exhibit ultra-high conductivity (<span><math><mrow><msup><mrow><mn>10</mn></mrow><mn>14</mn></msup><msup><mrow><mi>Ω</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mrow><mspace></mspace><mi>c</mi><mi>m</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mrow><mspace></mspace><mi>s</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math></span> at room temperature). These sheets display cohesive energies of −8.76, −8.72, and <span><math><mrow><mo>-</mo><mn>8.67</mn><mi>e</mi><mi>V</mi></mrow></math></span>, respectively, indicating their stability. These results are promising and underscore the significance of a single pair of <span><math><mrow><mi>B</mi><mi>N</mi></mrow></math></span> dopants in fullerene monolayers for advancing next-generation 2D nano-electronic applications.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the effect of BN doping in two-dimensional fullerene networks through first principle simulations\",\"authors\":\"Vivek K. Yadav\",\"doi\":\"10.1016/j.flatc.2024.100655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The doping of lighter non-metals like boron and nitrogen into fullerene <span><math><mrow><mfenced><mrow><msub><mi>C</mi><mn>60</mn></msub></mrow></mfenced></mrow></math></span> represents a promising advancement in the field of nanoelectronic devices. These doped two-dimensional (2D) materials offer improved stability and enhanced adsorption characteristics compared to pure form. Notably, It displays semiconducting behaviour, resulting in higher conductivity and carrier mobility. This study investigates the structural, electronic, optical, and conductivity/carrier transport properties of 2D polymer sheets made of fullerene, both with and without boron and nitrogen doping. We employ density functional theory (DFT) with PBE and HSE functionals, considering the inclusion of van der Waals (vdW) interactions. The research findings indicate that the <span><math><mrow><mn>2</mn><mi>D</mi></mrow></math></span> sheets of <span><math><mrow><msub><mi>C</mi><mn>60</mn></msub><mo>,</mo><msub><mi>C</mi><mn>58</mn></msub><msub><mi>B</mi><mn>1</mn></msub><msub><mi>N</mi><mn>1</mn></msub></mrow></math></span>, and <span><math><mrow><msub><mi>C</mi><mn>54</mn></msub><msub><mi>B</mi><mn>3</mn></msub><msub><mi>N</mi><mn>3</mn></msub></mrow></math></span> exhibit band gaps of approximately <span><math><mrow><mn>0.97</mn><mi>e</mi><mi>V</mi><mo>(</mo><mn>1.51</mn><mi>e</mi><mi>V</mi><mo>)</mo><mo>,</mo><mn>1.08</mn><mi>e</mi><mi>V</mi><mo>(</mo><mn>1.65</mn><mi>e</mi><mi>V</mi><mo>)</mo></mrow></math></span>, and <span><math><mrow><mn>1.05</mn><mi>e</mi><mi>V</mi><mo>(</mo><mn>1.56</mn><mi>e</mi><mi>V</mi><mo>)</mo></mrow></math></span>, respectively, as obtained from PBE (HSE) calculations. Moreover, according to the deformation potential theory, <span><math><mrow><msub><mi>C</mi><mn>58</mn></msub><msub><mi>B</mi><mn>1</mn></msub><msub><mi>N</mi><mn>1</mn></msub></mrow></math></span> exhibit ultra-high conductivity (<span><math><mrow><msup><mrow><mn>10</mn></mrow><mn>14</mn></msup><msup><mrow><mi>Ω</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mrow><mspace></mspace><mi>c</mi><mi>m</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mrow><mspace></mspace><mi>s</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math></span> at room temperature). These sheets display cohesive energies of −8.76, −8.72, and <span><math><mrow><mo>-</mo><mn>8.67</mn><mi>e</mi><mi>V</mi></mrow></math></span>, respectively, indicating their stability. These results are promising and underscore the significance of a single pair of <span><math><mrow><mi>B</mi><mi>N</mi></mrow></math></span> dopants in fullerene monolayers for advancing next-generation 2D nano-electronic applications.</p></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262724000497\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000497","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在富勒烯 C60 中掺入硼和氮等较轻的非金属,是纳米电子器件领域的一大进步。与纯材料相比,这些掺杂的二维(2D)材料具有更高的稳定性和更强的吸附特性。值得注意的是,它具有半导体特性,因此具有更高的导电性和载流子迁移率。本研究探讨了富勒烯二维聚合物薄片的结构、电子、光学和电导率/载流子传输特性,包括掺杂和不掺杂硼和氮的情况。我们采用了具有 PBE 和 HSE 函数的密度泛函理论(DFT),并考虑了范德华(vdW)相互作用。研究结果表明,通过 PBE(HSE)计算得到的 C60、C58B1N1 和 C54B3N3 的二维薄片带隙分别约为 0.97eV(1.51eV)、1.08eV(1.65eV)和 1.05eV(1.56eV)。此外,根据形变势理论,C58B1N1 表现出超高导电率(室温下为 1014Ω-1cm-1s-1)。这些薄片的内聚能分别为 -8.76、-8.72 和 -8.67eV,表明其具有稳定性。这些结果很有希望,并强调了富勒烯单层中的单对 BN 掺杂剂对推动下一代二维纳米电子应用的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the effect of BN doping in two-dimensional fullerene networks through first principle simulations

The doping of lighter non-metals like boron and nitrogen into fullerene C60 represents a promising advancement in the field of nanoelectronic devices. These doped two-dimensional (2D) materials offer improved stability and enhanced adsorption characteristics compared to pure form. Notably, It displays semiconducting behaviour, resulting in higher conductivity and carrier mobility. This study investigates the structural, electronic, optical, and conductivity/carrier transport properties of 2D polymer sheets made of fullerene, both with and without boron and nitrogen doping. We employ density functional theory (DFT) with PBE and HSE functionals, considering the inclusion of van der Waals (vdW) interactions. The research findings indicate that the 2D sheets of C60,C58B1N1, and C54B3N3 exhibit band gaps of approximately 0.97eV(1.51eV),1.08eV(1.65eV), and 1.05eV(1.56eV), respectively, as obtained from PBE (HSE) calculations. Moreover, according to the deformation potential theory, C58B1N1 exhibit ultra-high conductivity (1014Ω-1cm-1s-1 at room temperature). These sheets display cohesive energies of −8.76, −8.72, and -8.67eV, respectively, indicating their stability. These results are promising and underscore the significance of a single pair of BN dopants in fullerene monolayers for advancing next-generation 2D nano-electronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
期刊最新文献
Enhanced performance of Na4Ti5O12 nanowall arrays for next-generation pseudocapacitors through sodiation treatment Insight into the role of nickel carbide nanoparticles in improving photocatalytic H2 generation over ZnIn2S4 under visible light Electrochemical functionalization of graphene nanosheets with iodoacetic acid towards supercapacitor electrodes Graphene encapsulated Fe-based nanoparticles synthesized from iron(II) sulfate heptahydrate containing precursors: Influence of chemical vapor deposition parameters Influence of bonding variance on electron affinity in graphene quantum dot-barium titanate nanocomposites for drug delivery system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1