DAFA:实现高面积和能效的动态近似全加法器

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Integration-The Vlsi Journal Pub Date : 2024-04-01 DOI:10.1016/j.vlsi.2024.102191
Yavar Safaei Mehrabani , Reza Faghih Mirzaee
{"title":"DAFA:实现高面积和能效的动态近似全加法器","authors":"Yavar Safaei Mehrabani ,&nbsp;Reza Faghih Mirzaee","doi":"10.1016/j.vlsi.2024.102191","DOIUrl":null,"url":null,"abstract":"<div><p>As the number of transistors on a chip surface increases, power consumption becomes more and more a serious concern. A promising solution to bridge the gap between resource-constrained gadgets and computation-intensive applications could be the approximate computing paradigm. This paper presents four efficient approximate full adder cells based on dynamic logic and carbon nanotube field-effect transistors (CNFETs). To the best of our knowledge, dynamic logic has never been deployed in the design of approximate full adders before. Comprehensive simulations and analyses are conducted to study the efficacy of the new circuits. Simulation results indicate remarkable improvements compared to state-of-the-art circuits. For instance, at 0.9 V power supply, our final proposed design improves the power-delay-area product (PDAP) metric by at least 63% compared to its peers. Moreover, the applicability of the proposed adders in the image sharpening application is examined by measuring peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) using the MATLAB tool. The proposed designs have also a reasonable performance in this regard.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DAFA: Dynamic approximate full adders for high area and energy efficiency\",\"authors\":\"Yavar Safaei Mehrabani ,&nbsp;Reza Faghih Mirzaee\",\"doi\":\"10.1016/j.vlsi.2024.102191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the number of transistors on a chip surface increases, power consumption becomes more and more a serious concern. A promising solution to bridge the gap between resource-constrained gadgets and computation-intensive applications could be the approximate computing paradigm. This paper presents four efficient approximate full adder cells based on dynamic logic and carbon nanotube field-effect transistors (CNFETs). To the best of our knowledge, dynamic logic has never been deployed in the design of approximate full adders before. Comprehensive simulations and analyses are conducted to study the efficacy of the new circuits. Simulation results indicate remarkable improvements compared to state-of-the-art circuits. For instance, at 0.9 V power supply, our final proposed design improves the power-delay-area product (PDAP) metric by at least 63% compared to its peers. Moreover, the applicability of the proposed adders in the image sharpening application is examined by measuring peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) using the MATLAB tool. The proposed designs have also a reasonable performance in this regard.</p></div>\",\"PeriodicalId\":54973,\"journal\":{\"name\":\"Integration-The Vlsi Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integration-The Vlsi Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167926024000543\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024000543","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

随着芯片表面晶体管数量的增加,功耗越来越成为一个令人担忧的问题。近似计算范式是缩小资源受限的小工具与计算密集型应用之间差距的一个有前途的解决方案。本文介绍了四种基于动态逻辑和碳纳米管场效应晶体管(CNFET)的高效近似全加法器单元。据我们所知,动态逻辑以前从未用于近似全加法器的设计。为了研究新电路的功效,我们进行了全面的模拟和分析。仿真结果表明,与最先进的电路相比,新电路的性能有了显著提高。例如,在 0.9 V 电源条件下,我们最终提出的设计与同类产品相比,功率-延迟-面积乘积 (PDAP) 指标至少提高了 63%。此外,通过使用 MATLAB 工具测量峰值信噪比(PSNR)和结构相似性指数(SSIM),检验了所提出的加法器在图像锐化应用中的适用性。所提出的设计在这方面也有合理的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DAFA: Dynamic approximate full adders for high area and energy efficiency

As the number of transistors on a chip surface increases, power consumption becomes more and more a serious concern. A promising solution to bridge the gap between resource-constrained gadgets and computation-intensive applications could be the approximate computing paradigm. This paper presents four efficient approximate full adder cells based on dynamic logic and carbon nanotube field-effect transistors (CNFETs). To the best of our knowledge, dynamic logic has never been deployed in the design of approximate full adders before. Comprehensive simulations and analyses are conducted to study the efficacy of the new circuits. Simulation results indicate remarkable improvements compared to state-of-the-art circuits. For instance, at 0.9 V power supply, our final proposed design improves the power-delay-area product (PDAP) metric by at least 63% compared to its peers. Moreover, the applicability of the proposed adders in the image sharpening application is examined by measuring peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) using the MATLAB tool. The proposed designs have also a reasonable performance in this regard.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integration-The Vlsi Journal
Integration-The Vlsi Journal 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.30%
发文量
107
审稿时长
6 months
期刊介绍: Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics: Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.
期刊最新文献
Simple memristive chaotic systems with complex dynamics Model and system robustness in distributed CNN inference at the edge VLFF — A very low-power flip-flop with only two clock transistors Efficient and cost-effective maximum power point tracking technique for solar photovoltaic systems with Li-ion battery charging Digital background calibration algorithm for pipelined ADC based on time-delay neural network with genetic algorithm feature selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1