Yong Zhang, Mei Zhu, Kun Hu, Xing Liu, Yue Zou, Jixiang Chen
{"title":"含有氮杂环丁烷分子的新型酰胺衍生物作为潜在的 SDH 抑制剂:设计、合成和生物活性评估","authors":"Yong Zhang, Mei Zhu, Kun Hu, Xing Liu, Yue Zou, Jixiang Chen","doi":"10.1016/j.jscs.2024.101853","DOIUrl":null,"url":null,"abstract":"<div><p>Fluopyram is a highly effective agricultural fungicide targeting succinate dehydrogenase (SDH). Twenty-six novel amide derivatives containing azetidine were designed and synthesized with fluopyram as the lead, and their biological activities were tested. The results showed that some compounds had obvious antifungal activities against <em>Phomopsis</em> sp., among them, the EC<sub>50</sub> value of compound <strong>C24</strong> was 5.7 mg/L, which was significantly better than fluopyram (105.4 mg/L). The curative and protective activities of compound <strong>C24</strong> on kiwi fruit infected with <em>Phomopsis</em> sp. were 42.2 and 52.9 %, which were better than that of fluopyram (30.4 and 35.6 %) at 200 mg/L. Moreover, compound <strong>C24</strong> exhibited excellent inhibitory against SDH. The results of scanning electron microscopy (SEM) indicated that the mycelium of <em>Phomopsis</em> sp. collapsed or even ruptured after compound <strong>C24</strong> treatment. Meanwhile, molecular docking showed that compound <strong>C24</strong> was deeply embedded into the SDH binding pocket, and the binding model was stabilized by a cation–π interaction with Cys-40, Tyr-58 and an H-bond with Lys-455 and Asn-452. Compound <strong>C24</strong> can provide a valuable idea to find new succinate dehydrogenase inhibitors.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101853"},"PeriodicalIF":5.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000486/pdfft?md5=62a9e1616b27ea356a5d7308f56ad290&pid=1-s2.0-S1319610324000486-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel amide derivatives containing azetidine moiety as potential SDH inhibitors: Design, synthesis, and evaluation of bioactivity\",\"authors\":\"Yong Zhang, Mei Zhu, Kun Hu, Xing Liu, Yue Zou, Jixiang Chen\",\"doi\":\"10.1016/j.jscs.2024.101853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fluopyram is a highly effective agricultural fungicide targeting succinate dehydrogenase (SDH). Twenty-six novel amide derivatives containing azetidine were designed and synthesized with fluopyram as the lead, and their biological activities were tested. The results showed that some compounds had obvious antifungal activities against <em>Phomopsis</em> sp., among them, the EC<sub>50</sub> value of compound <strong>C24</strong> was 5.7 mg/L, which was significantly better than fluopyram (105.4 mg/L). The curative and protective activities of compound <strong>C24</strong> on kiwi fruit infected with <em>Phomopsis</em> sp. were 42.2 and 52.9 %, which were better than that of fluopyram (30.4 and 35.6 %) at 200 mg/L. Moreover, compound <strong>C24</strong> exhibited excellent inhibitory against SDH. The results of scanning electron microscopy (SEM) indicated that the mycelium of <em>Phomopsis</em> sp. collapsed or even ruptured after compound <strong>C24</strong> treatment. Meanwhile, molecular docking showed that compound <strong>C24</strong> was deeply embedded into the SDH binding pocket, and the binding model was stabilized by a cation–π interaction with Cys-40, Tyr-58 and an H-bond with Lys-455 and Asn-452. Compound <strong>C24</strong> can provide a valuable idea to find new succinate dehydrogenase inhibitors.</p></div>\",\"PeriodicalId\":16974,\"journal\":{\"name\":\"Journal of Saudi Chemical Society\",\"volume\":\"28 3\",\"pages\":\"Article 101853\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319610324000486/pdfft?md5=62a9e1616b27ea356a5d7308f56ad290&pid=1-s2.0-S1319610324000486-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Saudi Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319610324000486\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324000486","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Novel amide derivatives containing azetidine moiety as potential SDH inhibitors: Design, synthesis, and evaluation of bioactivity
Fluopyram is a highly effective agricultural fungicide targeting succinate dehydrogenase (SDH). Twenty-six novel amide derivatives containing azetidine were designed and synthesized with fluopyram as the lead, and their biological activities were tested. The results showed that some compounds had obvious antifungal activities against Phomopsis sp., among them, the EC50 value of compound C24 was 5.7 mg/L, which was significantly better than fluopyram (105.4 mg/L). The curative and protective activities of compound C24 on kiwi fruit infected with Phomopsis sp. were 42.2 and 52.9 %, which were better than that of fluopyram (30.4 and 35.6 %) at 200 mg/L. Moreover, compound C24 exhibited excellent inhibitory against SDH. The results of scanning electron microscopy (SEM) indicated that the mycelium of Phomopsis sp. collapsed or even ruptured after compound C24 treatment. Meanwhile, molecular docking showed that compound C24 was deeply embedded into the SDH binding pocket, and the binding model was stabilized by a cation–π interaction with Cys-40, Tyr-58 and an H-bond with Lys-455 and Asn-452. Compound C24 can provide a valuable idea to find new succinate dehydrogenase inhibitors.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.