{"title":"角切矩形圆柱体中奔腾不稳定性与涡流之间的空气动力相互作用","authors":"Thinzar Hnin, Tomomi Yagi, Kyohei Noguchi, Manoj Pradhan, Rintaro Kyotani, Hisato Matsumiya","doi":"10.1016/j.jfluidstructs.2024.104108","DOIUrl":null,"url":null,"abstract":"<div><p>Studies on bluff-body aerodynamics have emphasized that galloping instability is strongly associated with the Kármán vortex. This study discusses the aerodynamic interactions between the galloping instability and Kármán and motion-induced vortices, analyzes the effects of these vortices on vortex-induced vibration and galloping, and investigates the stabilizing effects of various corner cuts on a rectangular cylinder. Wind tunnel tests were performed on a rectangular cylinder with a side ratio of 1.5 under a smooth flow for seven different corner shapes. The rectangular cylinder with cut corners significantly reduced both the aerodynamic force coefficients and the Kármán vortex shedding intensity. Furthermore, spring-supported free vibration tests indicated that the onset reduced wind velocities were high in the response amplitudes of all corner-cut sections that were analyzed despite the significantly low onset reduced wind velocities of the Kármán vortex-induced vibration, which were denoted as the reciprocal of the Strouhal number and closely associated with the onset of galloping. This was attributed to the motion-induced vortex dominating the vibration when the Kármán vortex shedding intensity was reduced. Therefore, this study clarified one of the factors that affected the onset-reduced wind velocity of galloping.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic interaction between galloping instability and vortices in corner-cut rectangular cylinders\",\"authors\":\"Thinzar Hnin, Tomomi Yagi, Kyohei Noguchi, Manoj Pradhan, Rintaro Kyotani, Hisato Matsumiya\",\"doi\":\"10.1016/j.jfluidstructs.2024.104108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Studies on bluff-body aerodynamics have emphasized that galloping instability is strongly associated with the Kármán vortex. This study discusses the aerodynamic interactions between the galloping instability and Kármán and motion-induced vortices, analyzes the effects of these vortices on vortex-induced vibration and galloping, and investigates the stabilizing effects of various corner cuts on a rectangular cylinder. Wind tunnel tests were performed on a rectangular cylinder with a side ratio of 1.5 under a smooth flow for seven different corner shapes. The rectangular cylinder with cut corners significantly reduced both the aerodynamic force coefficients and the Kármán vortex shedding intensity. Furthermore, spring-supported free vibration tests indicated that the onset reduced wind velocities were high in the response amplitudes of all corner-cut sections that were analyzed despite the significantly low onset reduced wind velocities of the Kármán vortex-induced vibration, which were denoted as the reciprocal of the Strouhal number and closely associated with the onset of galloping. This was attributed to the motion-induced vortex dominating the vibration when the Kármán vortex shedding intensity was reduced. Therefore, this study clarified one of the factors that affected the onset-reduced wind velocity of galloping.</p></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624000434\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000434","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Aerodynamic interaction between galloping instability and vortices in corner-cut rectangular cylinders
Studies on bluff-body aerodynamics have emphasized that galloping instability is strongly associated with the Kármán vortex. This study discusses the aerodynamic interactions between the galloping instability and Kármán and motion-induced vortices, analyzes the effects of these vortices on vortex-induced vibration and galloping, and investigates the stabilizing effects of various corner cuts on a rectangular cylinder. Wind tunnel tests were performed on a rectangular cylinder with a side ratio of 1.5 under a smooth flow for seven different corner shapes. The rectangular cylinder with cut corners significantly reduced both the aerodynamic force coefficients and the Kármán vortex shedding intensity. Furthermore, spring-supported free vibration tests indicated that the onset reduced wind velocities were high in the response amplitudes of all corner-cut sections that were analyzed despite the significantly low onset reduced wind velocities of the Kármán vortex-induced vibration, which were denoted as the reciprocal of the Strouhal number and closely associated with the onset of galloping. This was attributed to the motion-induced vortex dominating the vibration when the Kármán vortex shedding intensity was reduced. Therefore, this study clarified one of the factors that affected the onset-reduced wind velocity of galloping.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.