{"title":"参数向量维度不断增加的网络数据模型的非渐近模型选择","authors":"Sean Eli , Michael Schweinberger","doi":"10.1016/j.jspi.2024.106173","DOIUrl":null,"url":null,"abstract":"<div><p>Model selection for network data is an open area of research. Using the <span><math><mi>β</mi></math></span>-model as a convenient starting point, we propose a simple and non-asymptotic approach to model selection of <span><math><mi>β</mi></math></span>-models with and without constraints. Simulations indicate that the proposed model selection approach selects the data-generating model with high probability, in contrast to classical and extended Bayesian Information Criteria. We conclude with an application to the Enron email network, which has 181,831 connections among 36,692 employees.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"233 ","pages":"Article 106173"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-asymptotic model selection for models of network data with parameter vectors of increasing dimension\",\"authors\":\"Sean Eli , Michael Schweinberger\",\"doi\":\"10.1016/j.jspi.2024.106173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Model selection for network data is an open area of research. Using the <span><math><mi>β</mi></math></span>-model as a convenient starting point, we propose a simple and non-asymptotic approach to model selection of <span><math><mi>β</mi></math></span>-models with and without constraints. Simulations indicate that the proposed model selection approach selects the data-generating model with high probability, in contrast to classical and extended Bayesian Information Criteria. We conclude with an application to the Enron email network, which has 181,831 connections among 36,692 employees.</p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"233 \",\"pages\":\"Article 106173\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000302\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000302","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Non-asymptotic model selection for models of network data with parameter vectors of increasing dimension
Model selection for network data is an open area of research. Using the -model as a convenient starting point, we propose a simple and non-asymptotic approach to model selection of -models with and without constraints. Simulations indicate that the proposed model selection approach selects the data-generating model with high probability, in contrast to classical and extended Bayesian Information Criteria. We conclude with an application to the Enron email network, which has 181,831 connections among 36,692 employees.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.