线性回归模型中前向梯度下降的收敛保证

Pub Date : 2024-04-06 DOI:10.1016/j.jspi.2024.106174
Thijs Bos , Johannes Schmidt-Hieber
{"title":"线性回归模型中前向梯度下降的收敛保证","authors":"Thijs Bos ,&nbsp;Johannes Schmidt-Hieber","doi":"10.1016/j.jspi.2024.106174","DOIUrl":null,"url":null,"abstract":"<div><p>Renewed interest in the relationship between artificial and biological neural networks motivates the study of gradient-free methods. Considering the linear regression model with random design, we theoretically analyze in this work the biologically motivated (weight-perturbed) forward gradient scheme that is based on random linear combination of the gradient. If <span><math><mi>d</mi></math></span> denotes the number of parameters and <span><math><mi>k</mi></math></span> the number of samples, we prove that the mean squared error of this method converges for <span><math><mrow><mi>k</mi><mo>≳</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> with rate <span><math><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>/</mo><mi>k</mi></mrow></math></span>. Compared to the dimension dependence <span><math><mi>d</mi></math></span> for stochastic gradient descent, an additional factor <span><math><mrow><mi>d</mi><mo>log</mo><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> occurs.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000314/pdfft?md5=fc5918288c472da3301b467d899078ad&pid=1-s2.0-S0378375824000314-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Convergence guarantees for forward gradient descent in the linear regression model\",\"authors\":\"Thijs Bos ,&nbsp;Johannes Schmidt-Hieber\",\"doi\":\"10.1016/j.jspi.2024.106174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Renewed interest in the relationship between artificial and biological neural networks motivates the study of gradient-free methods. Considering the linear regression model with random design, we theoretically analyze in this work the biologically motivated (weight-perturbed) forward gradient scheme that is based on random linear combination of the gradient. If <span><math><mi>d</mi></math></span> denotes the number of parameters and <span><math><mi>k</mi></math></span> the number of samples, we prove that the mean squared error of this method converges for <span><math><mrow><mi>k</mi><mo>≳</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> with rate <span><math><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>/</mo><mi>k</mi></mrow></math></span>. Compared to the dimension dependence <span><math><mi>d</mi></math></span> for stochastic gradient descent, an additional factor <span><math><mrow><mi>d</mi><mo>log</mo><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> occurs.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000314/pdfft?md5=fc5918288c472da3301b467d899078ad&pid=1-s2.0-S0378375824000314-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们对人工神经网络和生物神经网络之间关系的兴趣再次激发了对无梯度方法的研究。考虑到随机设计的线性回归模型,我们在本研究中从理论上分析了基于梯度随机线性组合的生物(权重扰动)前向梯度方案。如果 d 表示参数个数,k 表示样本个数,我们证明这种方法的均方误差在 k≳d2log(d) 条件下以 d2log(d)/k 的速率收敛。与随机梯度下降法的维度依赖性 d 相比,多了一个系数 dlog(d)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Convergence guarantees for forward gradient descent in the linear regression model

Renewed interest in the relationship between artificial and biological neural networks motivates the study of gradient-free methods. Considering the linear regression model with random design, we theoretically analyze in this work the biologically motivated (weight-perturbed) forward gradient scheme that is based on random linear combination of the gradient. If d denotes the number of parameters and k the number of samples, we prove that the mean squared error of this method converges for kd2log(d) with rate d2log(d)/k. Compared to the dimension dependence d for stochastic gradient descent, an additional factor dlog(d) occurs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1