大学生采用移动学习服务的驱动因素:SEM 神经网络模型的应用

Ali Tarhini , Mariam AlHinai , Adil S. Al-Busaidi , Srikrishna Madhumohan Govindaluri , Jamil Al Shaqsi
{"title":"大学生采用移动学习服务的驱动因素:SEM 神经网络模型的应用","authors":"Ali Tarhini ,&nbsp;Mariam AlHinai ,&nbsp;Adil S. Al-Busaidi ,&nbsp;Srikrishna Madhumohan Govindaluri ,&nbsp;Jamil Al Shaqsi","doi":"10.1016/j.jjimei.2024.100235","DOIUrl":null,"url":null,"abstract":"<div><p>This research aimed at examining factors influencing college students to adopt mobile learning (m-learning) services. An integrated model combined the information systems success (ISS) and Unified Theory of Acceptance and Use of Technology (UTAUT2), was developed to identify m-learning determinants. A sample of 552 was recruited to test hypotheses using structural equation modeling (SEM). The significant factors explained 70 % of the variance toward Behavioral Intention (BI) based on SEM results. While price value (PV), effort expectancy (EE), performance expectancy (PE), and privacy (PR) were not significant predictors of BI, the results of the neural network model ranked the predictive power of the factors in the following order: information quality, habit (HB), system quality (SYQ), hedonic motivation (HM), facilitating condition (FC), and social influence (SI), positively influenced m-learning adoption. The findings of this study helps the policy makers at higher educational institutions to formulate strategies to enhance students’ learning experience in upcoming crises and place a focus on sustainable mobile learning environment.</p></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"4 1","pages":"Article 100235"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667096824000247/pdfft?md5=3d47020c29dd7f37bc440bbc59b26335&pid=1-s2.0-S2667096824000247-main.pdf","citationCount":"0","resultStr":"{\"title\":\"What drives the adoption of mobile learning services among college students: An application of SEM-neural network modeling\",\"authors\":\"Ali Tarhini ,&nbsp;Mariam AlHinai ,&nbsp;Adil S. Al-Busaidi ,&nbsp;Srikrishna Madhumohan Govindaluri ,&nbsp;Jamil Al Shaqsi\",\"doi\":\"10.1016/j.jjimei.2024.100235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research aimed at examining factors influencing college students to adopt mobile learning (m-learning) services. An integrated model combined the information systems success (ISS) and Unified Theory of Acceptance and Use of Technology (UTAUT2), was developed to identify m-learning determinants. A sample of 552 was recruited to test hypotheses using structural equation modeling (SEM). The significant factors explained 70 % of the variance toward Behavioral Intention (BI) based on SEM results. While price value (PV), effort expectancy (EE), performance expectancy (PE), and privacy (PR) were not significant predictors of BI, the results of the neural network model ranked the predictive power of the factors in the following order: information quality, habit (HB), system quality (SYQ), hedonic motivation (HM), facilitating condition (FC), and social influence (SI), positively influenced m-learning adoption. The findings of this study helps the policy makers at higher educational institutions to formulate strategies to enhance students’ learning experience in upcoming crises and place a focus on sustainable mobile learning environment.</p></div>\",\"PeriodicalId\":100699,\"journal\":{\"name\":\"International Journal of Information Management Data Insights\",\"volume\":\"4 1\",\"pages\":\"Article 100235\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000247/pdfft?md5=3d47020c29dd7f37bc440bbc59b26335&pid=1-s2.0-S2667096824000247-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management Data Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096824000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨影响大学生采用移动学习(m-learning)服务的因素。研究结合信息系统成功理论(ISS)和技术接受与使用统一理论(UTAUT2),建立了一个综合模型,以确定移动学习的决定因素。研究人员招募了 552 个样本,利用结构方程模型(SEM)对假设进行检验。根据 SEM 结果,重要因素解释了 70% 的行为意向(BI)变异。虽然价格价值(PV)、努力预期(EE)、绩效预期(PE)和隐私(PR)对行为意向的预测作用不显著,但神经网络模型的结果将各因素的预测能力按以下顺序排列:信息质量、习惯(HB)、系统质量(SYQ)、享乐动机(HM)、便利条件(FC)和社会影响(SI)对移动学习的采用有积极影响。本研究的结果有助于高等院校的决策者制定策略,在即将到来的危机中提升学生的学习体验,并将重点放在可持续的移动学习环境上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What drives the adoption of mobile learning services among college students: An application of SEM-neural network modeling

This research aimed at examining factors influencing college students to adopt mobile learning (m-learning) services. An integrated model combined the information systems success (ISS) and Unified Theory of Acceptance and Use of Technology (UTAUT2), was developed to identify m-learning determinants. A sample of 552 was recruited to test hypotheses using structural equation modeling (SEM). The significant factors explained 70 % of the variance toward Behavioral Intention (BI) based on SEM results. While price value (PV), effort expectancy (EE), performance expectancy (PE), and privacy (PR) were not significant predictors of BI, the results of the neural network model ranked the predictive power of the factors in the following order: information quality, habit (HB), system quality (SYQ), hedonic motivation (HM), facilitating condition (FC), and social influence (SI), positively influenced m-learning adoption. The findings of this study helps the policy makers at higher educational institutions to formulate strategies to enhance students’ learning experience in upcoming crises and place a focus on sustainable mobile learning environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
期刊最新文献
Integrating trust and satisfaction into the UTAUT model to predict Chatbot adoption – A comparison between Gen-Z and Millennials Assessing industry 5.0 readiness—Prototype of a holistic digital index to evaluate sustainability, resilience and human-centered factors CovKG: A Covid-19 Knowledge Graph for enabling multidimensional analytics on Covid-19 epidemiological data considering spatiotemporal, environmental, health, and socioeconomic aspects Enhancing customer retention with machine learning: A comparative analysis of ensemble models for accurate churn prediction Customization of health insurance premiums using machine learning and explainable AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1