{"title":"通过生物信息学技术分析重症患者的综合生物大分子","authors":"Hisatake Matsumoto, Hiroshi Ogura, Jun Oda","doi":"10.1002/ams2.944","DOIUrl":null,"url":null,"abstract":"<p>Each patient with a critical illness such as sepsis and severe trauma has a different genetic background, comorbidities, age, and sex. Moreover, pathophysiology changes dynamically over time even in the same patient. Therefore, individualized treatment is necessary to account for heterogeneity in patient backgrounds. Recently, the analysis of comprehensive biomolecular information using clinical specimens has revealed novel molecular pathological classifications called subtypes. In addition, comprehensive biomolecular information using clinical specimens has enabled reverse translational research, which is a data-driven approach to the identification of drug target molecules. The development of these methods is expected to visualize the heterogeneity of patient backgrounds and lead to personalized therapy.</p>","PeriodicalId":7196,"journal":{"name":"Acute Medicine & Surgery","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ams2.944","citationCount":"0","resultStr":"{\"title\":\"Analysis of comprehensive biomolecules in critically ill patients via bioinformatics technologies\",\"authors\":\"Hisatake Matsumoto, Hiroshi Ogura, Jun Oda\",\"doi\":\"10.1002/ams2.944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Each patient with a critical illness such as sepsis and severe trauma has a different genetic background, comorbidities, age, and sex. Moreover, pathophysiology changes dynamically over time even in the same patient. Therefore, individualized treatment is necessary to account for heterogeneity in patient backgrounds. Recently, the analysis of comprehensive biomolecular information using clinical specimens has revealed novel molecular pathological classifications called subtypes. In addition, comprehensive biomolecular information using clinical specimens has enabled reverse translational research, which is a data-driven approach to the identification of drug target molecules. The development of these methods is expected to visualize the heterogeneity of patient backgrounds and lead to personalized therapy.</p>\",\"PeriodicalId\":7196,\"journal\":{\"name\":\"Acute Medicine & Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ams2.944\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acute Medicine & Surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ams2.944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acute Medicine & Surgery","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ams2.944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Analysis of comprehensive biomolecules in critically ill patients via bioinformatics technologies
Each patient with a critical illness such as sepsis and severe trauma has a different genetic background, comorbidities, age, and sex. Moreover, pathophysiology changes dynamically over time even in the same patient. Therefore, individualized treatment is necessary to account for heterogeneity in patient backgrounds. Recently, the analysis of comprehensive biomolecular information using clinical specimens has revealed novel molecular pathological classifications called subtypes. In addition, comprehensive biomolecular information using clinical specimens has enabled reverse translational research, which is a data-driven approach to the identification of drug target molecules. The development of these methods is expected to visualize the heterogeneity of patient backgrounds and lead to personalized therapy.