利用紧凑型元显微镜进行定量相位成像

Junyi Wang, Rongtao Yu, Xin Ye, Jiacheng Sun, Jian Li, Chunyu Huang, Xingjian Xiao, Jitao Ji, Wenjing Shen, Zuoxiu Tie, Chen Chen, Shining Zhu, Tao Li
{"title":"利用紧凑型元显微镜进行定量相位成像","authors":"Junyi Wang, Rongtao Yu, Xin Ye, Jiacheng Sun, Jian Li, Chunyu Huang, Xingjian Xiao, Jitao Ji, Wenjing Shen, Zuoxiu Tie, Chen Chen, Shining Zhu, Tao Li","doi":"10.1038/s44310-024-00007-8","DOIUrl":null,"url":null,"abstract":"Quantitative phase imaging (QPI) based on the transport-of-intensity equation (TIE) is a powerful technique in label-free microscopy. The image stack required for a successful TIE-QPI is traditionally obtained by translating the object or image plane, and the optical elements used in the conventional TIE-QPI systems are usually bulky and cumbersome. Stable and compact TIE-QPI methods capable of non-motion optical zooming can significantly facilitate applications that demand portability. Here, we propose a non-motion TIE-QPI method based on a dispersive metalens. The dispersive nature of the metalens is utilized to provide a spectral focal tuning. With fixed object and image planes, seven through-focus intensity images are captured by changing the illumination wavelength. The QPI performance is validated by retrieving the surface phase profiles of a microlens array and a phase resolution target, showing a high phase detection accuracy (deviation less than 0.03 wavelength). Subsequently, we established a compact meta-microscope by integrating the metalens with a commercially available CMOS image sensor, which shows good performance in microscopic imaging of unstained bio-samples. Our approach, based on the large-dispersive metalens, facilitates a compact and robust QPI system for optical metrology and label-free microscopy.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00007-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantitative phase imaging with a compact meta-microscope\",\"authors\":\"Junyi Wang, Rongtao Yu, Xin Ye, Jiacheng Sun, Jian Li, Chunyu Huang, Xingjian Xiao, Jitao Ji, Wenjing Shen, Zuoxiu Tie, Chen Chen, Shining Zhu, Tao Li\",\"doi\":\"10.1038/s44310-024-00007-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantitative phase imaging (QPI) based on the transport-of-intensity equation (TIE) is a powerful technique in label-free microscopy. The image stack required for a successful TIE-QPI is traditionally obtained by translating the object or image plane, and the optical elements used in the conventional TIE-QPI systems are usually bulky and cumbersome. Stable and compact TIE-QPI methods capable of non-motion optical zooming can significantly facilitate applications that demand portability. Here, we propose a non-motion TIE-QPI method based on a dispersive metalens. The dispersive nature of the metalens is utilized to provide a spectral focal tuning. With fixed object and image planes, seven through-focus intensity images are captured by changing the illumination wavelength. The QPI performance is validated by retrieving the surface phase profiles of a microlens array and a phase resolution target, showing a high phase detection accuracy (deviation less than 0.03 wavelength). Subsequently, we established a compact meta-microscope by integrating the metalens with a commercially available CMOS image sensor, which shows good performance in microscopic imaging of unstained bio-samples. Our approach, based on the large-dispersive metalens, facilitates a compact and robust QPI system for optical metrology and label-free microscopy.\",\"PeriodicalId\":501711,\"journal\":{\"name\":\"npj Nanophotonics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44310-024-00007-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44310-024-00007-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44310-024-00007-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于强度传输方程(TIE)的定量相位成像(QPI)是一种强大的无标记显微镜技术。成功的 TIE-QPI 所需的图像堆栈传统上是通过平移物体或图像平面来获得的,而传统 TIE-QPI 系统中使用的光学元件通常笨重而累赘。能够实现非运动光学变焦的稳定而紧凑的 TIE-QPI 方法可极大地促进要求便携性的应用。在此,我们提出了一种基于色散金属膜的非运动 TIE-QPI 方法。我们利用金属膜的色散特性来提供光谱焦点调谐。在物体和图像平面固定的情况下,通过改变照明波长可以捕捉到七幅通过焦点的强度图像。通过检索微透镜阵列和相位分辨目标的表面相位轮廓,验证了 QPI 的性能,显示出较高的相位检测精度(偏差小于 0.03 波长)。随后,我们将金属传感器与市售的 CMOS 图像传感器集成在一起,建立了一个紧凑的元显微镜,在对未染色的生物样本进行显微成像时显示出良好的性能。我们的方法以大色散金属膜为基础,有助于为光学计量和无标记显微镜设计一个紧凑、坚固的 QPI 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative phase imaging with a compact meta-microscope
Quantitative phase imaging (QPI) based on the transport-of-intensity equation (TIE) is a powerful technique in label-free microscopy. The image stack required for a successful TIE-QPI is traditionally obtained by translating the object or image plane, and the optical elements used in the conventional TIE-QPI systems are usually bulky and cumbersome. Stable and compact TIE-QPI methods capable of non-motion optical zooming can significantly facilitate applications that demand portability. Here, we propose a non-motion TIE-QPI method based on a dispersive metalens. The dispersive nature of the metalens is utilized to provide a spectral focal tuning. With fixed object and image planes, seven through-focus intensity images are captured by changing the illumination wavelength. The QPI performance is validated by retrieving the surface phase profiles of a microlens array and a phase resolution target, showing a high phase detection accuracy (deviation less than 0.03 wavelength). Subsequently, we established a compact meta-microscope by integrating the metalens with a commercially available CMOS image sensor, which shows good performance in microscopic imaging of unstained bio-samples. Our approach, based on the large-dispersive metalens, facilitates a compact and robust QPI system for optical metrology and label-free microscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AlGaN/AlN heterostructures: an emerging platform for integrated photonics. Broadband cavity-enhanced Kerr Comb spectroscopy on Chip Perspectives of chiral nanophotonics: from mechanisms to biomedical applications Teleportation of a genuine single-rail vacuum-one-photon qubit generated via a quantum dot source Non-Hermitian selective thermal emitter for thermophotovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1