Junyi Wang, Rongtao Yu, Xin Ye, Jiacheng Sun, Jian Li, Chunyu Huang, Xingjian Xiao, Jitao Ji, Wenjing Shen, Zuoxiu Tie, Chen Chen, Shining Zhu, Tao Li
{"title":"利用紧凑型元显微镜进行定量相位成像","authors":"Junyi Wang, Rongtao Yu, Xin Ye, Jiacheng Sun, Jian Li, Chunyu Huang, Xingjian Xiao, Jitao Ji, Wenjing Shen, Zuoxiu Tie, Chen Chen, Shining Zhu, Tao Li","doi":"10.1038/s44310-024-00007-8","DOIUrl":null,"url":null,"abstract":"Quantitative phase imaging (QPI) based on the transport-of-intensity equation (TIE) is a powerful technique in label-free microscopy. The image stack required for a successful TIE-QPI is traditionally obtained by translating the object or image plane, and the optical elements used in the conventional TIE-QPI systems are usually bulky and cumbersome. Stable and compact TIE-QPI methods capable of non-motion optical zooming can significantly facilitate applications that demand portability. Here, we propose a non-motion TIE-QPI method based on a dispersive metalens. The dispersive nature of the metalens is utilized to provide a spectral focal tuning. With fixed object and image planes, seven through-focus intensity images are captured by changing the illumination wavelength. The QPI performance is validated by retrieving the surface phase profiles of a microlens array and a phase resolution target, showing a high phase detection accuracy (deviation less than 0.03 wavelength). Subsequently, we established a compact meta-microscope by integrating the metalens with a commercially available CMOS image sensor, which shows good performance in microscopic imaging of unstained bio-samples. Our approach, based on the large-dispersive metalens, facilitates a compact and robust QPI system for optical metrology and label-free microscopy.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00007-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantitative phase imaging with a compact meta-microscope\",\"authors\":\"Junyi Wang, Rongtao Yu, Xin Ye, Jiacheng Sun, Jian Li, Chunyu Huang, Xingjian Xiao, Jitao Ji, Wenjing Shen, Zuoxiu Tie, Chen Chen, Shining Zhu, Tao Li\",\"doi\":\"10.1038/s44310-024-00007-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantitative phase imaging (QPI) based on the transport-of-intensity equation (TIE) is a powerful technique in label-free microscopy. The image stack required for a successful TIE-QPI is traditionally obtained by translating the object or image plane, and the optical elements used in the conventional TIE-QPI systems are usually bulky and cumbersome. Stable and compact TIE-QPI methods capable of non-motion optical zooming can significantly facilitate applications that demand portability. Here, we propose a non-motion TIE-QPI method based on a dispersive metalens. The dispersive nature of the metalens is utilized to provide a spectral focal tuning. With fixed object and image planes, seven through-focus intensity images are captured by changing the illumination wavelength. The QPI performance is validated by retrieving the surface phase profiles of a microlens array and a phase resolution target, showing a high phase detection accuracy (deviation less than 0.03 wavelength). Subsequently, we established a compact meta-microscope by integrating the metalens with a commercially available CMOS image sensor, which shows good performance in microscopic imaging of unstained bio-samples. Our approach, based on the large-dispersive metalens, facilitates a compact and robust QPI system for optical metrology and label-free microscopy.\",\"PeriodicalId\":501711,\"journal\":{\"name\":\"npj Nanophotonics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44310-024-00007-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44310-024-00007-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44310-024-00007-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantitative phase imaging with a compact meta-microscope
Quantitative phase imaging (QPI) based on the transport-of-intensity equation (TIE) is a powerful technique in label-free microscopy. The image stack required for a successful TIE-QPI is traditionally obtained by translating the object or image plane, and the optical elements used in the conventional TIE-QPI systems are usually bulky and cumbersome. Stable and compact TIE-QPI methods capable of non-motion optical zooming can significantly facilitate applications that demand portability. Here, we propose a non-motion TIE-QPI method based on a dispersive metalens. The dispersive nature of the metalens is utilized to provide a spectral focal tuning. With fixed object and image planes, seven through-focus intensity images are captured by changing the illumination wavelength. The QPI performance is validated by retrieving the surface phase profiles of a microlens array and a phase resolution target, showing a high phase detection accuracy (deviation less than 0.03 wavelength). Subsequently, we established a compact meta-microscope by integrating the metalens with a commercially available CMOS image sensor, which shows good performance in microscopic imaging of unstained bio-samples. Our approach, based on the large-dispersive metalens, facilitates a compact and robust QPI system for optical metrology and label-free microscopy.