Xiang Sun, Ru-Yue Li, Hao-Yu Sun, Paul H. Olin, M. Santosh, Bin Fu, Jun Deng
{"title":"中国特提斯喜马拉雅山铅锌银锑矿化成因:富锑流体覆盖的早期岩浆-热液铅锌(-银)成矿作用","authors":"Xiang Sun, Ru-Yue Li, Hao-Yu Sun, Paul H. Olin, M. Santosh, Bin Fu, Jun Deng","doi":"10.1007/s00126-024-01264-5","DOIUrl":null,"url":null,"abstract":"<p>Determining the association of Pb–Zn(-Ag) mineralization with granite is crucial for understanding metallogeny and identifying exploration targets. The genesis of Pb–Zn-Ag-Sb deposits and their genetic association with Sb(-Au) deposits and granite-associated Sn-W deposits in the Tethys Himalaya of southern Tibet, China, remains controversial. Our comprehensive study of in situ element compositions and sulfur isotopes of sulfides, together with in situ quartz oxygen isotopes for the Zhaxikang Pb–Zn-Ag-Sb deposit, sheds light on this issue. LA-ICP-MS analyses of early sulfides in manganosiderite veins, coupled with C-O isotopes of manganosiderite, indicate that the early fluids were enriched in Pb, Zn, Ag, Sb, Sn, and Cu, originating from magmatic fluids mixing with meteoric water. The early formed sulfides underwent fluid-mediated remobilization and dissolution, releasing many metallic elements (e.g., Pb, Zn, and Ag) into later As-Sb-rich fluids. These elements reprecipitated as Fe-poor sphalerite, As-rich pyrite, and abundant Sb-Pb sulfosalts with minor Ag-bearing minerals. Oxygen isotopes of quartz indicate that the later fluids were derived from pulsed releases of magmatic fluids mixing with meteoric water. In situ sulfur isotopes of three generations of pyrite indicate that early Pb–Zn(-Ag) sulfide precipitation was linked to magmatic sulfur, whereas precipitation of the later sulfosalts and stibnite involved external sulfur with relatively lower sulfur isotopes compared with early mineralization. We argue that Pb–Zn-Ag-Sb deposits in the Tethys Himalaya resulted from two distinct mineralization pulses. The early Pb–Zn(-Ag) mineralization was associated with crustal magmatic rocks (e.g., leucogranite), followed by the overprinting of later Sb-rich magmatic fluids. Notably, the later magmatic fluids responsible for Zhaxikang Pb–Zn-Ag-Sb mineralization were also associated with the regional Sb(-Au) deposits in the Tethys Himalaya.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genesis of Pb–Zn-Ag-Sb mineralization in the Tethys Himalaya, China: Early magmatic-hydrothermal Pb–Zn(-Ag) mineralization overprinted by Sb-rich fluids\",\"authors\":\"Xiang Sun, Ru-Yue Li, Hao-Yu Sun, Paul H. Olin, M. Santosh, Bin Fu, Jun Deng\",\"doi\":\"10.1007/s00126-024-01264-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Determining the association of Pb–Zn(-Ag) mineralization with granite is crucial for understanding metallogeny and identifying exploration targets. The genesis of Pb–Zn-Ag-Sb deposits and their genetic association with Sb(-Au) deposits and granite-associated Sn-W deposits in the Tethys Himalaya of southern Tibet, China, remains controversial. Our comprehensive study of in situ element compositions and sulfur isotopes of sulfides, together with in situ quartz oxygen isotopes for the Zhaxikang Pb–Zn-Ag-Sb deposit, sheds light on this issue. LA-ICP-MS analyses of early sulfides in manganosiderite veins, coupled with C-O isotopes of manganosiderite, indicate that the early fluids were enriched in Pb, Zn, Ag, Sb, Sn, and Cu, originating from magmatic fluids mixing with meteoric water. The early formed sulfides underwent fluid-mediated remobilization and dissolution, releasing many metallic elements (e.g., Pb, Zn, and Ag) into later As-Sb-rich fluids. These elements reprecipitated as Fe-poor sphalerite, As-rich pyrite, and abundant Sb-Pb sulfosalts with minor Ag-bearing minerals. Oxygen isotopes of quartz indicate that the later fluids were derived from pulsed releases of magmatic fluids mixing with meteoric water. In situ sulfur isotopes of three generations of pyrite indicate that early Pb–Zn(-Ag) sulfide precipitation was linked to magmatic sulfur, whereas precipitation of the later sulfosalts and stibnite involved external sulfur with relatively lower sulfur isotopes compared with early mineralization. We argue that Pb–Zn-Ag-Sb deposits in the Tethys Himalaya resulted from two distinct mineralization pulses. The early Pb–Zn(-Ag) mineralization was associated with crustal magmatic rocks (e.g., leucogranite), followed by the overprinting of later Sb-rich magmatic fluids. Notably, the later magmatic fluids responsible for Zhaxikang Pb–Zn-Ag-Sb mineralization were also associated with the regional Sb(-Au) deposits in the Tethys Himalaya.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-024-01264-5\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01264-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Genesis of Pb–Zn-Ag-Sb mineralization in the Tethys Himalaya, China: Early magmatic-hydrothermal Pb–Zn(-Ag) mineralization overprinted by Sb-rich fluids
Determining the association of Pb–Zn(-Ag) mineralization with granite is crucial for understanding metallogeny and identifying exploration targets. The genesis of Pb–Zn-Ag-Sb deposits and their genetic association with Sb(-Au) deposits and granite-associated Sn-W deposits in the Tethys Himalaya of southern Tibet, China, remains controversial. Our comprehensive study of in situ element compositions and sulfur isotopes of sulfides, together with in situ quartz oxygen isotopes for the Zhaxikang Pb–Zn-Ag-Sb deposit, sheds light on this issue. LA-ICP-MS analyses of early sulfides in manganosiderite veins, coupled with C-O isotopes of manganosiderite, indicate that the early fluids were enriched in Pb, Zn, Ag, Sb, Sn, and Cu, originating from magmatic fluids mixing with meteoric water. The early formed sulfides underwent fluid-mediated remobilization and dissolution, releasing many metallic elements (e.g., Pb, Zn, and Ag) into later As-Sb-rich fluids. These elements reprecipitated as Fe-poor sphalerite, As-rich pyrite, and abundant Sb-Pb sulfosalts with minor Ag-bearing minerals. Oxygen isotopes of quartz indicate that the later fluids were derived from pulsed releases of magmatic fluids mixing with meteoric water. In situ sulfur isotopes of three generations of pyrite indicate that early Pb–Zn(-Ag) sulfide precipitation was linked to magmatic sulfur, whereas precipitation of the later sulfosalts and stibnite involved external sulfur with relatively lower sulfur isotopes compared with early mineralization. We argue that Pb–Zn-Ag-Sb deposits in the Tethys Himalaya resulted from two distinct mineralization pulses. The early Pb–Zn(-Ag) mineralization was associated with crustal magmatic rocks (e.g., leucogranite), followed by the overprinting of later Sb-rich magmatic fluids. Notably, the later magmatic fluids responsible for Zhaxikang Pb–Zn-Ag-Sb mineralization were also associated with the regional Sb(-Au) deposits in the Tethys Himalaya.
期刊介绍:
The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.