建立一种对个人网络结构进行分类的通用方法

IF 2.9 2区 社会学 Q1 ANTHROPOLOGY Social Networks Pub Date : 2024-04-09 DOI:10.1016/j.socnet.2024.03.004
Miguel A. González-Casado , Gladis Gonzales , José Luis Molina , Angel Sánchez
{"title":"建立一种对个人网络结构进行分类的通用方法","authors":"Miguel A. González-Casado ,&nbsp;Gladis Gonzales ,&nbsp;José Luis Molina ,&nbsp;Angel Sánchez","doi":"10.1016/j.socnet.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present a method to uncover the fundamental dimensions of structural variability in Personal Networks (PNs) and develop a classification solely based on these structural properties. We address the limitations of previous literature and lay the foundation for a rigorous methodology to construct a Structural Typology of PNs. We test our method with a dataset of nearly 8,000 PNs belonging to high school students. We find that the structural variability of these PNs can be described in terms of six basic dimensions encompassing community and cohesive subgroup structure, as well as levels of cohesion, hierarchy, and centralization. Our method allows us to categorize these PNs into eight types and to interpret them structurally. We assess the robustness and generality of our methodology by comparing with previous results on structural typologies. To encourage its adoption, its improvement by others, and to support future research, we provide a publicly available Python class, enabling researchers to utilize our method and test the universality of our results.</p></div>","PeriodicalId":48353,"journal":{"name":"Social Networks","volume":"78 ","pages":"Pages 265-278"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378873324000194/pdfft?md5=38d792b1b8e705770073172ca9546a0d&pid=1-s2.0-S0378873324000194-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards a general method to classify personal network structures\",\"authors\":\"Miguel A. González-Casado ,&nbsp;Gladis Gonzales ,&nbsp;José Luis Molina ,&nbsp;Angel Sánchez\",\"doi\":\"10.1016/j.socnet.2024.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we present a method to uncover the fundamental dimensions of structural variability in Personal Networks (PNs) and develop a classification solely based on these structural properties. We address the limitations of previous literature and lay the foundation for a rigorous methodology to construct a Structural Typology of PNs. We test our method with a dataset of nearly 8,000 PNs belonging to high school students. We find that the structural variability of these PNs can be described in terms of six basic dimensions encompassing community and cohesive subgroup structure, as well as levels of cohesion, hierarchy, and centralization. Our method allows us to categorize these PNs into eight types and to interpret them structurally. We assess the robustness and generality of our methodology by comparing with previous results on structural typologies. To encourage its adoption, its improvement by others, and to support future research, we provide a publicly available Python class, enabling researchers to utilize our method and test the universality of our results.</p></div>\",\"PeriodicalId\":48353,\"journal\":{\"name\":\"Social Networks\",\"volume\":\"78 \",\"pages\":\"Pages 265-278\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378873324000194/pdfft?md5=38d792b1b8e705770073172ca9546a0d&pid=1-s2.0-S0378873324000194-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Networks\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378873324000194\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANTHROPOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Networks","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378873324000194","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了一种揭示个人网络(PNs)结构变异性基本维度的方法,并完全根据这些结构特性进行分类。我们解决了以往文献的局限性,为构建个人网络结构类型学的严格方法奠定了基础。我们用一个包含近 8000 个高中生个人网络的数据集测试了我们的方法。我们发现,这些 PN 的结构变异性可以用六个基本维度来描述,包括社区和内聚亚群结构,以及内聚、等级和集中化水平。通过我们的方法,我们可以将这些 PNs 分成八种类型,并从结构上对它们进行解释。通过与以往的结构类型学研究成果进行比较,我们评估了我们的方法的稳健性和通用性。为了鼓励他人采用和改进我们的方法,并支持未来的研究,我们提供了一个公开可用的 Python 类,使研究人员能够使用我们的方法并测试我们结果的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a general method to classify personal network structures

In this study, we present a method to uncover the fundamental dimensions of structural variability in Personal Networks (PNs) and develop a classification solely based on these structural properties. We address the limitations of previous literature and lay the foundation for a rigorous methodology to construct a Structural Typology of PNs. We test our method with a dataset of nearly 8,000 PNs belonging to high school students. We find that the structural variability of these PNs can be described in terms of six basic dimensions encompassing community and cohesive subgroup structure, as well as levels of cohesion, hierarchy, and centralization. Our method allows us to categorize these PNs into eight types and to interpret them structurally. We assess the robustness and generality of our methodology by comparing with previous results on structural typologies. To encourage its adoption, its improvement by others, and to support future research, we provide a publicly available Python class, enabling researchers to utilize our method and test the universality of our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Social Networks
Social Networks Multiple-
CiteScore
5.90
自引率
12.90%
发文量
118
期刊介绍: Social Networks is an interdisciplinary and international quarterly. It provides a common forum for representatives of anthropology, sociology, history, social psychology, political science, human geography, biology, economics, communications science and other disciplines who share an interest in the study of the empirical structure of social relations and associations that may be expressed in network form. It publishes both theoretical and substantive papers. Critical reviews of major theoretical or methodological approaches using the notion of networks in the analysis of social behaviour are also included, as are reviews of recent books dealing with social networks and social structure.
期刊最新文献
Why distinctiveness centrality is distinctive Editorial Board How many friends do youth nominate? A meta-analysis of gender, age, and geographic differences in average outdegree centrality A stopping rule for randomly sampling bipartite networks with fixed degree sequences Multilevel integrated healthcare: The evaluation of Project ECHO® networks to integrate children’s healthcare in Australia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1