Zeus Gracia-Tabuenca , Elise B. Barbeau , Yu Xia , Xiaoqian Chai
{"title":"通过多模态脑成像预测青春期早期的抑郁风险","authors":"Zeus Gracia-Tabuenca , Elise B. Barbeau , Yu Xia , Xiaoqian Chai","doi":"10.1016/j.nicl.2024.103604","DOIUrl":null,"url":null,"abstract":"<div><p>Depression is an incapacitating psychiatric disorder with increased risk through adolescence. Among other factors, children with family history of depression have significantly higher risk of developing depression. Early identification of pre-adolescent children who are at risk of depression is crucial for early intervention and prevention. In this study, we used a large longitudinal sample from the Adolescent Brain Cognitive Development (ABCD) Study (2658 participants after imaging quality control, between 9–10 years at baseline), we applied advanced machine learning methods to predict depression risk at the two-year follow-up from the baseline assessment, using a set of comprehensive multimodal neuroimaging features derived from structural MRI, diffusion tensor imaging, and task and rest functional MRI. Prediction performance underwent a rigorous cross-validation method of leave-one-site-out. Our results demonstrate that all brain features had prediction scores significantly better than expected by chance, with brain features from rest-fMRI showing the best classification performance in the high-risk group of participants with parental history of depression (N = 625). Specifically, rest-fMRI features, which came from functional connectomes, showed significantly better classification performance than other brain features. This finding highlights the key role of the interacting elements of the connectome in capturing more individual variability in psychopathology compared to measures of single brain regions. Our study contributes to the effort of identifying biological risks of depression in early adolescence in population-based samples.</p></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213158224000433/pdfft?md5=7e468a99735216037dbcb473b424a467&pid=1-s2.0-S2213158224000433-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting depression risk in early adolescence via multimodal brain imaging\",\"authors\":\"Zeus Gracia-Tabuenca , Elise B. Barbeau , Yu Xia , Xiaoqian Chai\",\"doi\":\"10.1016/j.nicl.2024.103604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Depression is an incapacitating psychiatric disorder with increased risk through adolescence. Among other factors, children with family history of depression have significantly higher risk of developing depression. Early identification of pre-adolescent children who are at risk of depression is crucial for early intervention and prevention. In this study, we used a large longitudinal sample from the Adolescent Brain Cognitive Development (ABCD) Study (2658 participants after imaging quality control, between 9–10 years at baseline), we applied advanced machine learning methods to predict depression risk at the two-year follow-up from the baseline assessment, using a set of comprehensive multimodal neuroimaging features derived from structural MRI, diffusion tensor imaging, and task and rest functional MRI. Prediction performance underwent a rigorous cross-validation method of leave-one-site-out. Our results demonstrate that all brain features had prediction scores significantly better than expected by chance, with brain features from rest-fMRI showing the best classification performance in the high-risk group of participants with parental history of depression (N = 625). Specifically, rest-fMRI features, which came from functional connectomes, showed significantly better classification performance than other brain features. This finding highlights the key role of the interacting elements of the connectome in capturing more individual variability in psychopathology compared to measures of single brain regions. Our study contributes to the effort of identifying biological risks of depression in early adolescence in population-based samples.</p></div>\",\"PeriodicalId\":54359,\"journal\":{\"name\":\"Neuroimage-Clinical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213158224000433/pdfft?md5=7e468a99735216037dbcb473b424a467&pid=1-s2.0-S2213158224000433-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage-Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213158224000433\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158224000433","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Predicting depression risk in early adolescence via multimodal brain imaging
Depression is an incapacitating psychiatric disorder with increased risk through adolescence. Among other factors, children with family history of depression have significantly higher risk of developing depression. Early identification of pre-adolescent children who are at risk of depression is crucial for early intervention and prevention. In this study, we used a large longitudinal sample from the Adolescent Brain Cognitive Development (ABCD) Study (2658 participants after imaging quality control, between 9–10 years at baseline), we applied advanced machine learning methods to predict depression risk at the two-year follow-up from the baseline assessment, using a set of comprehensive multimodal neuroimaging features derived from structural MRI, diffusion tensor imaging, and task and rest functional MRI. Prediction performance underwent a rigorous cross-validation method of leave-one-site-out. Our results demonstrate that all brain features had prediction scores significantly better than expected by chance, with brain features from rest-fMRI showing the best classification performance in the high-risk group of participants with parental history of depression (N = 625). Specifically, rest-fMRI features, which came from functional connectomes, showed significantly better classification performance than other brain features. This finding highlights the key role of the interacting elements of the connectome in capturing more individual variability in psychopathology compared to measures of single brain regions. Our study contributes to the effort of identifying biological risks of depression in early adolescence in population-based samples.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.