{"title":"开发用于椎体 CT 图像年龄估计的深度学习算法","authors":"Ikuo Kawashita , Wataru Fukumoto , Hidenori Mitani , Keigo Narita , Keigo Chosa , Yuko Nakamura , Masataka Nagao , Kazuo Awai","doi":"10.1016/j.legalmed.2024.102444","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The accurate age estimation of cadavers is essential for their identification. However, conventional methods fail to yield adequate age estimation especially in elderly cadavers. We developed a deep learning algorithm for age estimation on CT images of the vertebral column and checked its accuracy.</p></div><div><h3>Method</h3><p>For the development of our deep learning algorithm, we included 1,120 CT data of the vertebral column of 140 patients for each of 8 age decades. The deep learning model of regression analysis based on Visual Geometry Group-16 (VGG16) was improved in its estimation accuracy by bagging. To verify its accuracy, we applied our deep learning algorithm to estimate the age of 219 cadavers who had undergone postmortem CT (PMCT). The mean difference and the mean absolute error (MAE), the standard error of the estimate (SEE) between the known- and the estimated age, were calculated. Correlation analysis using the intraclass correlation coefficient (ICC) and Bland-Altman analysis were performed to assess differences between the known- and the estimated age.</p></div><div><h3>Results</h3><p>For the 219 cadavers, the mean difference between the known- and the estimated age was 0.30 years; it was 4.36 years for the MAE, and 5.48 years for the SEE. The ICC (2,1) was 0.96 (95 % confidence interval: 0.95–0.97, p < 0.001). Bland-Altman analysis showed that there were no proportional or fixed errors (p = 0.08 and 0.41).</p></div><div><h3>Conclusions</h3><p>Our deep learning algorithm for estimating the age of 219 cadavers on CT images of the vertebral column was more accurate than conventional methods and highly useful.</p></div>","PeriodicalId":49913,"journal":{"name":"Legal Medicine","volume":"69 ","pages":"Article 102444"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a deep-learning algorithm for age estimation on CT images of the vertebral column\",\"authors\":\"Ikuo Kawashita , Wataru Fukumoto , Hidenori Mitani , Keigo Narita , Keigo Chosa , Yuko Nakamura , Masataka Nagao , Kazuo Awai\",\"doi\":\"10.1016/j.legalmed.2024.102444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>The accurate age estimation of cadavers is essential for their identification. However, conventional methods fail to yield adequate age estimation especially in elderly cadavers. We developed a deep learning algorithm for age estimation on CT images of the vertebral column and checked its accuracy.</p></div><div><h3>Method</h3><p>For the development of our deep learning algorithm, we included 1,120 CT data of the vertebral column of 140 patients for each of 8 age decades. The deep learning model of regression analysis based on Visual Geometry Group-16 (VGG16) was improved in its estimation accuracy by bagging. To verify its accuracy, we applied our deep learning algorithm to estimate the age of 219 cadavers who had undergone postmortem CT (PMCT). The mean difference and the mean absolute error (MAE), the standard error of the estimate (SEE) between the known- and the estimated age, were calculated. Correlation analysis using the intraclass correlation coefficient (ICC) and Bland-Altman analysis were performed to assess differences between the known- and the estimated age.</p></div><div><h3>Results</h3><p>For the 219 cadavers, the mean difference between the known- and the estimated age was 0.30 years; it was 4.36 years for the MAE, and 5.48 years for the SEE. The ICC (2,1) was 0.96 (95 % confidence interval: 0.95–0.97, p < 0.001). Bland-Altman analysis showed that there were no proportional or fixed errors (p = 0.08 and 0.41).</p></div><div><h3>Conclusions</h3><p>Our deep learning algorithm for estimating the age of 219 cadavers on CT images of the vertebral column was more accurate than conventional methods and highly useful.</p></div>\",\"PeriodicalId\":49913,\"journal\":{\"name\":\"Legal Medicine\",\"volume\":\"69 \",\"pages\":\"Article 102444\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Legal Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1344622324000543\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1344622324000543","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Development of a deep-learning algorithm for age estimation on CT images of the vertebral column
Purpose
The accurate age estimation of cadavers is essential for their identification. However, conventional methods fail to yield adequate age estimation especially in elderly cadavers. We developed a deep learning algorithm for age estimation on CT images of the vertebral column and checked its accuracy.
Method
For the development of our deep learning algorithm, we included 1,120 CT data of the vertebral column of 140 patients for each of 8 age decades. The deep learning model of regression analysis based on Visual Geometry Group-16 (VGG16) was improved in its estimation accuracy by bagging. To verify its accuracy, we applied our deep learning algorithm to estimate the age of 219 cadavers who had undergone postmortem CT (PMCT). The mean difference and the mean absolute error (MAE), the standard error of the estimate (SEE) between the known- and the estimated age, were calculated. Correlation analysis using the intraclass correlation coefficient (ICC) and Bland-Altman analysis were performed to assess differences between the known- and the estimated age.
Results
For the 219 cadavers, the mean difference between the known- and the estimated age was 0.30 years; it was 4.36 years for the MAE, and 5.48 years for the SEE. The ICC (2,1) was 0.96 (95 % confidence interval: 0.95–0.97, p < 0.001). Bland-Altman analysis showed that there were no proportional or fixed errors (p = 0.08 and 0.41).
Conclusions
Our deep learning algorithm for estimating the age of 219 cadavers on CT images of the vertebral column was more accurate than conventional methods and highly useful.
期刊介绍:
Legal Medicine provides an international forum for the publication of original articles, reviews and correspondence on subjects that cover practical and theoretical areas of interest relating to the wide range of legal medicine.
Subjects covered include forensic pathology, toxicology, odontology, anthropology, criminalistics, immunochemistry, hemogenetics and forensic aspects of biological science with emphasis on DNA analysis and molecular biology. Submissions dealing with medicolegal problems such as malpractice, insurance, child abuse or ethics in medical practice are also acceptable.