论拉格朗日形式主义对连续时间随机最优控制的适应:拉格朗日-乔的翻版

IF 1.9 3区 经济学 Q2 ECONOMICS Journal of Economic Dynamics & Control Pub Date : 2024-04-05 DOI:10.1016/j.jedc.2024.104855
Christian Oliver Ewald , Charles Nolan
{"title":"论拉格朗日形式主义对连续时间随机最优控制的适应:拉格朗日-乔的翻版","authors":"Christian Oliver Ewald ,&nbsp;Charles Nolan","doi":"10.1016/j.jedc.2024.104855","DOIUrl":null,"url":null,"abstract":"<div><p>We show how the classical Lagrangian approach to solving constrained optimization problems from standard calculus can be extended to solve continuous time stochastic optimal control problems. Connections to mainstream approaches such as the Hamilton-Jacobi-Bellman equation and the stochastic maximum principle are drawn. Our approach is linked to the stochastic maximum principle, but more direct and tied to the classical Lagrangian principle, avoiding the use of backward stochastic differential equations in its formulation. Using infinite dimensional functional analysis, we formalize and extend the approach first outlined in <span>Chow (1992)</span> within a rigorous mathematical setting using infinite dimensional functional analysis. We provide examples that demonstrate the usefulness and effectiveness of our approach in practice. Further, we demonstrate the potential for numerical applications facilitating some of our key equations in combination with Monte Carlo backward simulation and linear regression, therefore illustrating a completely different and new avenue for the numerical application of Chow's methods.</p></div>","PeriodicalId":48314,"journal":{"name":"Journal of Economic Dynamics & Control","volume":"162 ","pages":"Article 104855"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165188924000472/pdfft?md5=6fe46ccf8bd5aac962492fe7fcb5bbd6&pid=1-s2.0-S0165188924000472-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the adaptation of the Lagrange formalism to continuous time stochastic optimal control: A Lagrange-Chow redux\",\"authors\":\"Christian Oliver Ewald ,&nbsp;Charles Nolan\",\"doi\":\"10.1016/j.jedc.2024.104855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show how the classical Lagrangian approach to solving constrained optimization problems from standard calculus can be extended to solve continuous time stochastic optimal control problems. Connections to mainstream approaches such as the Hamilton-Jacobi-Bellman equation and the stochastic maximum principle are drawn. Our approach is linked to the stochastic maximum principle, but more direct and tied to the classical Lagrangian principle, avoiding the use of backward stochastic differential equations in its formulation. Using infinite dimensional functional analysis, we formalize and extend the approach first outlined in <span>Chow (1992)</span> within a rigorous mathematical setting using infinite dimensional functional analysis. We provide examples that demonstrate the usefulness and effectiveness of our approach in practice. Further, we demonstrate the potential for numerical applications facilitating some of our key equations in combination with Monte Carlo backward simulation and linear regression, therefore illustrating a completely different and new avenue for the numerical application of Chow's methods.</p></div>\",\"PeriodicalId\":48314,\"journal\":{\"name\":\"Journal of Economic Dynamics & Control\",\"volume\":\"162 \",\"pages\":\"Article 104855\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0165188924000472/pdfft?md5=6fe46ccf8bd5aac962492fe7fcb5bbd6&pid=1-s2.0-S0165188924000472-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Dynamics & Control\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165188924000472\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Dynamics & Control","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165188924000472","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了如何将标准微积分中解决约束优化问题的经典拉格朗日方法扩展到解决连续时间随机最优控制问题。我们引出了与汉密尔顿-雅各比-贝尔曼方程和随机最大原则等主流方法的联系。我们的方法与随机最大原则有联系,但更直接,与经典的拉格朗日原则相联系,避免了在其表述中使用反向随机微分方程。通过使用无限维函数分析,我们将 Chow(1992)首次概述的方法正式化并扩展到使用无限维函数分析的严格数学环境中。我们举例说明了我们的方法在实践中的实用性和有效性。此外,我们还展示了将我们的一些关键方程与蒙特卡罗反向模拟和线性回归相结合的数值应用潜力,从而为周氏方法的数值应用提供了一条完全不同的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the adaptation of the Lagrange formalism to continuous time stochastic optimal control: A Lagrange-Chow redux

We show how the classical Lagrangian approach to solving constrained optimization problems from standard calculus can be extended to solve continuous time stochastic optimal control problems. Connections to mainstream approaches such as the Hamilton-Jacobi-Bellman equation and the stochastic maximum principle are drawn. Our approach is linked to the stochastic maximum principle, but more direct and tied to the classical Lagrangian principle, avoiding the use of backward stochastic differential equations in its formulation. Using infinite dimensional functional analysis, we formalize and extend the approach first outlined in Chow (1992) within a rigorous mathematical setting using infinite dimensional functional analysis. We provide examples that demonstrate the usefulness and effectiveness of our approach in practice. Further, we demonstrate the potential for numerical applications facilitating some of our key equations in combination with Monte Carlo backward simulation and linear regression, therefore illustrating a completely different and new avenue for the numerical application of Chow's methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
199
期刊介绍: The journal provides an outlet for publication of research concerning all theoretical and empirical aspects of economic dynamics and control as well as the development and use of computational methods in economics and finance. Contributions regarding computational methods may include, but are not restricted to, artificial intelligence, databases, decision support systems, genetic algorithms, modelling languages, neural networks, numerical algorithms for optimization, control and equilibria, parallel computing and qualitative reasoning.
期刊最新文献
When and how should an incumbent respond to a potentially disruptive event? Systemic risk in banking, fire sales, and macroeconomic disasters The labor market channel of systemic risk Lack of identification of parameters in a simple behavioral macroeconomic model Heterogeneous beliefs and short selling taxes: A note
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1