用于癌症免疫疗法研究的体外和体内实验模型

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Research in Biotechnology Pub Date : 2024-01-01 DOI:10.1016/j.crbiot.2024.100210
Chunye Zhang , Yuxiang Sui , Shuai Liu , Ming Yang
{"title":"用于癌症免疫疗法研究的体外和体内实验模型","authors":"Chunye Zhang ,&nbsp;Yuxiang Sui ,&nbsp;Shuai Liu ,&nbsp;Ming Yang","doi":"10.1016/j.crbiot.2024.100210","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer incidence and mortality are increasing globally. Cancer immunotherapies, such as immune checkpoint inhibitors and adoptive cell therapy, have been recognized as a revolutionary treatment approach to combat cancer. However, immunotherapeutic resistance and cancer recurrence after immunotherapy alarm us to further explore the underlying mechanisms and develop new immunotherapies. Experimental models hold great value in cancer research studies such as deciphering the mechanism of tumor initiation and growth, drug discovery, and evaluation of immunotherapy efficacy. The ideal model is expected to recapitulate and mimic the human tumor microenvironment, including biological, physiological, and immunologic functionality. However, each model has its pros and cons, and the selection of a model depends on many factors, such as model features, study aims, and availability of related resources. In this review, we discussed commonly used models currently used in cancer research and immunotherapy, including 2D and 3D in vitro cell culture models such as spheroid, organoid, hydrogel model, and microfluidic chip, and in vivo mouse tumor models such as genetically engineered models, chemically induced models, cell-derived xenograft (CDX) models, patient-derived xenograft (PDX) models, and humanized mouse models. Both in vitro and in vivo preclinical models are powerful tools for studying cancer immunotherapy, but all these models have their limitations. To promote the success of clinical treatment in cancer therapy, advanced model systems that can better recapitulate the human tumor environment and host immune response are preferable options for preclinical study.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000364/pdfft?md5=03a21e8b61a40cb9300398ce21488acf&pid=1-s2.0-S2590262824000364-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In vitro and in vivo experimental models for cancer immunotherapy study\",\"authors\":\"Chunye Zhang ,&nbsp;Yuxiang Sui ,&nbsp;Shuai Liu ,&nbsp;Ming Yang\",\"doi\":\"10.1016/j.crbiot.2024.100210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer incidence and mortality are increasing globally. Cancer immunotherapies, such as immune checkpoint inhibitors and adoptive cell therapy, have been recognized as a revolutionary treatment approach to combat cancer. However, immunotherapeutic resistance and cancer recurrence after immunotherapy alarm us to further explore the underlying mechanisms and develop new immunotherapies. Experimental models hold great value in cancer research studies such as deciphering the mechanism of tumor initiation and growth, drug discovery, and evaluation of immunotherapy efficacy. The ideal model is expected to recapitulate and mimic the human tumor microenvironment, including biological, physiological, and immunologic functionality. However, each model has its pros and cons, and the selection of a model depends on many factors, such as model features, study aims, and availability of related resources. In this review, we discussed commonly used models currently used in cancer research and immunotherapy, including 2D and 3D in vitro cell culture models such as spheroid, organoid, hydrogel model, and microfluidic chip, and in vivo mouse tumor models such as genetically engineered models, chemically induced models, cell-derived xenograft (CDX) models, patient-derived xenograft (PDX) models, and humanized mouse models. Both in vitro and in vivo preclinical models are powerful tools for studying cancer immunotherapy, but all these models have their limitations. To promote the success of clinical treatment in cancer therapy, advanced model systems that can better recapitulate the human tumor environment and host immune response are preferable options for preclinical study.</p></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000364/pdfft?md5=03a21e8b61a40cb9300398ce21488acf&pid=1-s2.0-S2590262824000364-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球癌症发病率和死亡率不断上升。癌症免疫疗法,如免疫检查点抑制剂和收养细胞疗法,已被公认为一种革命性的抗癌治疗方法。然而,免疫治疗耐药性和免疫治疗后的癌症复发,给我们敲响了警钟,需要进一步探索其潜在机制,开发新的免疫疗法。实验模型在癌症研究中具有重要价值,如破译肿瘤发生和生长机制、药物发现和免疫疗法疗效评估等。理想的模型应能再现和模拟人类肿瘤微环境,包括生物、生理和免疫功能。然而,每种模型都有其优缺点,模型的选择取决于多种因素,如模型特征、研究目的和相关资源的可用性。在这篇综述中,我们讨论了目前用于癌症研究和免疫疗法的常用模型,包括二维和三维体外细胞培养模型,如球形、类器官、水凝胶模型和微流控芯片;以及体内小鼠肿瘤模型,如基因工程模型、化学诱导模型、细胞衍生异种移植(CDX)模型、患者衍生异种移植(PDX)模型和人源化小鼠模型。体外和体内临床前模型都是研究癌症免疫疗法的有力工具,但所有这些模型都有其局限性。为了促进癌症临床治疗的成功,能够更好地再现人类肿瘤环境和宿主免疫反应的先进模型系统是临床前研究的首选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vitro and in vivo experimental models for cancer immunotherapy study

Cancer incidence and mortality are increasing globally. Cancer immunotherapies, such as immune checkpoint inhibitors and adoptive cell therapy, have been recognized as a revolutionary treatment approach to combat cancer. However, immunotherapeutic resistance and cancer recurrence after immunotherapy alarm us to further explore the underlying mechanisms and develop new immunotherapies. Experimental models hold great value in cancer research studies such as deciphering the mechanism of tumor initiation and growth, drug discovery, and evaluation of immunotherapy efficacy. The ideal model is expected to recapitulate and mimic the human tumor microenvironment, including biological, physiological, and immunologic functionality. However, each model has its pros and cons, and the selection of a model depends on many factors, such as model features, study aims, and availability of related resources. In this review, we discussed commonly used models currently used in cancer research and immunotherapy, including 2D and 3D in vitro cell culture models such as spheroid, organoid, hydrogel model, and microfluidic chip, and in vivo mouse tumor models such as genetically engineered models, chemically induced models, cell-derived xenograft (CDX) models, patient-derived xenograft (PDX) models, and humanized mouse models. Both in vitro and in vivo preclinical models are powerful tools for studying cancer immunotherapy, but all these models have their limitations. To promote the success of clinical treatment in cancer therapy, advanced model systems that can better recapitulate the human tumor environment and host immune response are preferable options for preclinical study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Biotechnology
Current Research in Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.70
自引率
3.60%
发文量
50
审稿时长
38 days
期刊介绍: Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Engineering yeast lipids for production of designer biodiesel Table of Contents Dolastatins and their analogues present a compelling landscape of potential natural and synthetic anticancer drug candidates Drug Discovery, Diagnostic, and therapeutic trends on Mpox: A patent landscape Life cycle and environmental impact assessment of vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1