用于实时 DVS 数据压缩的三维传感器内计算:65 纳米硬件-算法协同设计

IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Solid-State Circuits Letters Pub Date : 2024-03-08 DOI:10.1109/LSSC.2024.3375110
Gopikrishnan R. Nair;Pragnya S. Nalla;Gokul Krishnan;Anupreetham;Jonghyun Oh;Ahmed Hassan;Injune Yeo;Kishore Kasichainula;Mingoo Seok;Jae-Sun Seo;Yu Cao
{"title":"用于实时 DVS 数据压缩的三维传感器内计算:65 纳米硬件-算法协同设计","authors":"Gopikrishnan R. Nair;Pragnya S. Nalla;Gokul Krishnan;Anupreetham;Jonghyun Oh;Ahmed Hassan;Injune Yeo;Kishore Kasichainula;Mingoo Seok;Jae-Sun Seo;Yu Cao","doi":"10.1109/LSSC.2024.3375110","DOIUrl":null,"url":null,"abstract":"Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we demonstrate a low latency, low power in-sensor computing architecture to compress the data from a 3D-stacked dynamic vision sensor (DVS). In this design, we adopt a 4-bit autoencoder algorithm and implement it on an AI computing layer with in-memory computing (IMC) to enable real-time compression of DVS data. To support 3-D integration, this architecture is optimized to handle the unique constraints, including footprint to match the size of the sensor array, low latency to manage the continuous data stream, and low-power consumption to avoid thermal issues. Our prototype chip in 65-nm CMOS demonstrates the new concept of 3-D in-sensor computing, achieving < 6 mW power consumption at 1–10 MHz operating frequency, and\n<inline-formula> <tex-math>$10\\times $ </tex-math></inline-formula>\n compression ratio on \n<inline-formula> <tex-math>$256\\times 256$ </tex-math></inline-formula>\n DVS pixels.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"119-122"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3-D In-Sensor Computing for Real-Time DVS Data Compression: 65-nm Hardware-Algorithm Co-Design\",\"authors\":\"Gopikrishnan R. Nair;Pragnya S. Nalla;Gokul Krishnan;Anupreetham;Jonghyun Oh;Ahmed Hassan;Injune Yeo;Kishore Kasichainula;Mingoo Seok;Jae-Sun Seo;Yu Cao\",\"doi\":\"10.1109/LSSC.2024.3375110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we demonstrate a low latency, low power in-sensor computing architecture to compress the data from a 3D-stacked dynamic vision sensor (DVS). In this design, we adopt a 4-bit autoencoder algorithm and implement it on an AI computing layer with in-memory computing (IMC) to enable real-time compression of DVS data. To support 3-D integration, this architecture is optimized to handle the unique constraints, including footprint to match the size of the sensor array, low latency to manage the continuous data stream, and low-power consumption to avoid thermal issues. Our prototype chip in 65-nm CMOS demonstrates the new concept of 3-D in-sensor computing, achieving < 6 mW power consumption at 1–10 MHz operating frequency, and\\n<inline-formula> <tex-math>$10\\\\times $ </tex-math></inline-formula>\\n compression ratio on \\n<inline-formula> <tex-math>$256\\\\times 256$ </tex-math></inline-formula>\\n DVS pixels.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"7 \",\"pages\":\"119-122\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10463618/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10463618/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在严格的功率和延迟限制条件下,传统的 IO 链路不足以传输大量图像传感器数据。为此,我们展示了一种低延迟、低功耗的传感器内计算架构,用于压缩来自三维堆叠动态视觉传感器(DVS)的数据。在这一设计中,我们采用了 4 位自动编码器算法,并在带有内存计算(IMC)的人工智能计算层上实现了这一算法,从而实现了对 DVS 数据的实时压缩。为了支持三维集成,我们对这一架构进行了优化,以应对各种独特的限制,包括与传感器阵列尺寸相匹配的占位面积、管理连续数据流的低延迟,以及避免热问题的低功耗。我们的原型芯片采用 65-nm CMOS 工艺,展示了 3-D 传感器内计算的新概念,在 1-10 MHz 工作频率下功耗小于 6 mW,在 256times 256$ DVS 像素上实现了 10times$ 的压缩率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3-D In-Sensor Computing for Real-Time DVS Data Compression: 65-nm Hardware-Algorithm Co-Design
Traditional IO links are insufficient to transport high volume of image sensor data, under stringent power and latency constraints. To address this, we demonstrate a low latency, low power in-sensor computing architecture to compress the data from a 3D-stacked dynamic vision sensor (DVS). In this design, we adopt a 4-bit autoencoder algorithm and implement it on an AI computing layer with in-memory computing (IMC) to enable real-time compression of DVS data. To support 3-D integration, this architecture is optimized to handle the unique constraints, including footprint to match the size of the sensor array, low latency to manage the continuous data stream, and low-power consumption to avoid thermal issues. Our prototype chip in 65-nm CMOS demonstrates the new concept of 3-D in-sensor computing, achieving < 6 mW power consumption at 1–10 MHz operating frequency, and $10\times $ compression ratio on $256\times 256$ DVS pixels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
期刊最新文献
Terahertz Sensing With CMOS-RFIC:Feasibility Verification for Short-Range Imaging Using 300-GHz MIMO Radar Analysis and Optimization of Parasitics-Induced Peak Frequency Shift in Gain-Boosted N-Path Switched-Capacitor Bandpass Filter A 28-GHz Variable-Gain Phase Shifter With Phase Compensation Using Analog Addition and Subtraction Method A 33.06-Gb/s Reconfigurable Galois Field oFEC Decoder for Optical Intersatellite Communication A 1–3 GHz Fast-Locking Frequency Synthesizer Based on a Combination of PLL and MDLL With Auto-Zero Phase-Error Compensation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1