Yeeun Kim, Hyunjun Lee, Cheongbeom Lee, Beomjin Kim, Nayoon Kwon, Taewoong Son, Jaehee Lee, Jaegwan Sin, Taejoo Shin, Jungyup Yang, Kyeounghak Kim, Jangwon Seo
{"title":"利用三酸锍添加剂提高两步法制造的过氧化物太阳能电池的性能","authors":"Yeeun Kim, Hyunjun Lee, Cheongbeom Lee, Beomjin Kim, Nayoon Kwon, Taewoong Son, Jaehee Lee, Jaegwan Sin, Taejoo Shin, Jungyup Yang, Kyeounghak Kim, Jangwon Seo","doi":"10.1002/eom2.12446","DOIUrl":null,"url":null,"abstract":"<p>We incorporated triphenylsulfonium triflate (TPST), a sulfonium-based additive consisting of polar triflate and bulky hydrophobic phenyl rings, to the PbI<sub>2</sub> precursor solution for preparation of less-defect perovskite film via two-step fabrication. TPST induced localized alterations in the array of the PbI<sub>2</sub> structure due to its large size, thereby forming a more discontinuous and coarser surface with a greater number of pinholes and subsequently facilitating more efficient organic–inorganic reactions. As a result, we achieved the production of thick perovskite films with enlarged granules and decreased PbI<sub>2</sub> residuals in the two-step fabrication process. Furthermore, TPST facilitated the passivation of bulk film defects by increasing the binding energy with the defects. Consequently, the ITO/SnO<sub>2</sub> np-based device and the FTO/CBD SnO<sub>2</sub>-based device obtained the best PCEs of 23.88% and 24.30%, respectively. Furthermore, the moisture stability of the perovskite was improved by the hydrophobic character of the TPST additive.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 4","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12446","citationCount":"0","resultStr":"{\"title\":\"Enhancing performance of two-step fabricated perovskite solar cells with sulfonium triflate-based additive\",\"authors\":\"Yeeun Kim, Hyunjun Lee, Cheongbeom Lee, Beomjin Kim, Nayoon Kwon, Taewoong Son, Jaehee Lee, Jaegwan Sin, Taejoo Shin, Jungyup Yang, Kyeounghak Kim, Jangwon Seo\",\"doi\":\"10.1002/eom2.12446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We incorporated triphenylsulfonium triflate (TPST), a sulfonium-based additive consisting of polar triflate and bulky hydrophobic phenyl rings, to the PbI<sub>2</sub> precursor solution for preparation of less-defect perovskite film via two-step fabrication. TPST induced localized alterations in the array of the PbI<sub>2</sub> structure due to its large size, thereby forming a more discontinuous and coarser surface with a greater number of pinholes and subsequently facilitating more efficient organic–inorganic reactions. As a result, we achieved the production of thick perovskite films with enlarged granules and decreased PbI<sub>2</sub> residuals in the two-step fabrication process. Furthermore, TPST facilitated the passivation of bulk film defects by increasing the binding energy with the defects. Consequently, the ITO/SnO<sub>2</sub> np-based device and the FTO/CBD SnO<sub>2</sub>-based device obtained the best PCEs of 23.88% and 24.30%, respectively. Furthermore, the moisture stability of the perovskite was improved by the hydrophobic character of the TPST additive.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"6 4\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12446\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhancing performance of two-step fabricated perovskite solar cells with sulfonium triflate-based additive
We incorporated triphenylsulfonium triflate (TPST), a sulfonium-based additive consisting of polar triflate and bulky hydrophobic phenyl rings, to the PbI2 precursor solution for preparation of less-defect perovskite film via two-step fabrication. TPST induced localized alterations in the array of the PbI2 structure due to its large size, thereby forming a more discontinuous and coarser surface with a greater number of pinholes and subsequently facilitating more efficient organic–inorganic reactions. As a result, we achieved the production of thick perovskite films with enlarged granules and decreased PbI2 residuals in the two-step fabrication process. Furthermore, TPST facilitated the passivation of bulk film defects by increasing the binding energy with the defects. Consequently, the ITO/SnO2 np-based device and the FTO/CBD SnO2-based device obtained the best PCEs of 23.88% and 24.30%, respectively. Furthermore, the moisture stability of the perovskite was improved by the hydrophobic character of the TPST additive.