利用传感器融合加强线弧快速成型制造过程监控的数字影像方法

IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Industrial Information Integration Pub Date : 2024-04-06 DOI:10.1016/j.jii.2024.100609
Haochen Mu , Fengyang He , Lei Yuan , Philip Commins , Donghong Ding , Zengxi Pan
{"title":"利用传感器融合加强线弧快速成型制造过程监控的数字影像方法","authors":"Haochen Mu ,&nbsp;Fengyang He ,&nbsp;Lei Yuan ,&nbsp;Philip Commins ,&nbsp;Donghong Ding ,&nbsp;Zengxi Pan","doi":"10.1016/j.jii.2024.100609","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of Industry 4.0 and smart manufacturing, improving production automation, intelligence, and digitalization has become a research trend in the Wire Arc Additive Manufacturing (WAAM) field. This study introduces a digital shadow that aims to improve the adaptiveness and dimensionality of monitoring systems in WAAM. Three sensors are used in the digital shadow: a welding electric signal sensor, a camera, and a laser profilometer to collect welding current and voltage data, image data, and point cloud data. The collected multi-scaled data are time and spatially synchronized by sampling multiple points along the welding path. Three ML algorithms are used for decision-making: Multi-layer Perceptron (MLP) classifier and YOLOv5 are used for time and spatial-scale detection, respectively, and a Variational Autoencoder (VAE) is used for the decision-level fusion. The system performance is then tested to detect defects and geometric errors in practical experiments and the results show that the overall F1 score is 0.791, including detecting, classifying, and analyzing the cause of defects. Additionally, the total predicting time is within 0.5 s, which is suitable for an in-process monitoring system.</p></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"40 ","pages":"Article 100609"},"PeriodicalIF":10.4000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452414X24000530/pdfft?md5=afd94347db3fd70aee553ff3a272ca89&pid=1-s2.0-S2452414X24000530-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A digital shadow approach for enhancing process monitoring in wire arc additive manufacturing using sensor fusion\",\"authors\":\"Haochen Mu ,&nbsp;Fengyang He ,&nbsp;Lei Yuan ,&nbsp;Philip Commins ,&nbsp;Donghong Ding ,&nbsp;Zengxi Pan\",\"doi\":\"10.1016/j.jii.2024.100609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the development of Industry 4.0 and smart manufacturing, improving production automation, intelligence, and digitalization has become a research trend in the Wire Arc Additive Manufacturing (WAAM) field. This study introduces a digital shadow that aims to improve the adaptiveness and dimensionality of monitoring systems in WAAM. Three sensors are used in the digital shadow: a welding electric signal sensor, a camera, and a laser profilometer to collect welding current and voltage data, image data, and point cloud data. The collected multi-scaled data are time and spatially synchronized by sampling multiple points along the welding path. Three ML algorithms are used for decision-making: Multi-layer Perceptron (MLP) classifier and YOLOv5 are used for time and spatial-scale detection, respectively, and a Variational Autoencoder (VAE) is used for the decision-level fusion. The system performance is then tested to detect defects and geometric errors in practical experiments and the results show that the overall F1 score is 0.791, including detecting, classifying, and analyzing the cause of defects. Additionally, the total predicting time is within 0.5 s, which is suitable for an in-process monitoring system.</p></div>\",\"PeriodicalId\":55975,\"journal\":{\"name\":\"Journal of Industrial Information Integration\",\"volume\":\"40 \",\"pages\":\"Article 100609\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452414X24000530/pdfft?md5=afd94347db3fd70aee553ff3a272ca89&pid=1-s2.0-S2452414X24000530-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Information Integration\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452414X24000530\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24000530","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着工业 4.0 和智能制造的发展,提高生产自动化、智能化和数字化水平已成为线弧快速成型制造(WAAM)领域的研究趋势。本研究介绍了一种数字影子,旨在提高 WAAM 中监控系统的适应性和维度。数字阴影中使用了三个传感器:焊接电信号传感器、摄像头和激光轮廓仪,用于收集焊接电流和电压数据、图像数据和点云数据。通过对焊接路径上的多个点进行采样,收集到的多尺度数据实现了时间和空间同步。决策过程中使用了三种 ML 算法:多层感知器(MLP)分类器和 YOLOv5 分别用于时间和空间尺度检测,变异自动编码器(VAE)用于决策级融合。然后在实际实验中测试了系统在检测缺陷和几何误差方面的性能,结果表明,包括检测、分类和分析缺陷原因在内,系统的总体 F1 得分为 0.791。此外,总预测时间不超过 0.5 秒,适合用于过程监控系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A digital shadow approach for enhancing process monitoring in wire arc additive manufacturing using sensor fusion

With the development of Industry 4.0 and smart manufacturing, improving production automation, intelligence, and digitalization has become a research trend in the Wire Arc Additive Manufacturing (WAAM) field. This study introduces a digital shadow that aims to improve the adaptiveness and dimensionality of monitoring systems in WAAM. Three sensors are used in the digital shadow: a welding electric signal sensor, a camera, and a laser profilometer to collect welding current and voltage data, image data, and point cloud data. The collected multi-scaled data are time and spatially synchronized by sampling multiple points along the welding path. Three ML algorithms are used for decision-making: Multi-layer Perceptron (MLP) classifier and YOLOv5 are used for time and spatial-scale detection, respectively, and a Variational Autoencoder (VAE) is used for the decision-level fusion. The system performance is then tested to detect defects and geometric errors in practical experiments and the results show that the overall F1 score is 0.791, including detecting, classifying, and analyzing the cause of defects. Additionally, the total predicting time is within 0.5 s, which is suitable for an in-process monitoring system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Information Integration
Journal of Industrial Information Integration Decision Sciences-Information Systems and Management
CiteScore
22.30
自引率
13.40%
发文量
100
期刊介绍: The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers. The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.
期刊最新文献
Enhancing mixed gas discrimination in e-nose system: Sparse recurrent neural networks using transient current fluctuation of SMO array sensor An effective farmer-centred mobile intelligence solution using lightweight deep learning for integrated wheat pest management TRIPLE: A blockchain-based digital twin framework for cyber–physical systems security Industrial information integration in deep space exploration and exploitation: Architecture and technology Interoperability levels and challenges of digital twins in cyber–physical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1