青藏高原旋涡不同特征之间的联系

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES International Journal of Climatology Pub Date : 2024-02-22 DOI:10.1002/joc.8397
Jun Ma, Lun Li
{"title":"青藏高原旋涡不同特征之间的联系","authors":"Jun Ma,&nbsp;Lun Li","doi":"10.1002/joc.8397","DOIUrl":null,"url":null,"abstract":"<p>Tibetan Plateau vortices (TPVs) are major rainfall triggers over the Tibetan Plateau (TP), which often cause heavy rainfalls in eastern China when moving off the TP. Although previous studies have revealed the climatic characteristics of TPVs at different timescales, the relationships between the different activity characteristics of TPVs are unclear. In this study, TPVs during May to August during 1998–2020 are objectively identified based on ERA5 reanalysis data, and connections between the initial states of TPVs and their subsequent activities, as well as the connections between the states of TPVs before moving off the TP and those after moving off are investigated. It is reported that the TPVs generated over the central and western TP north of 32° N, particularly near 84° E, 35° N, are always stronger, maintain longer and move further in their subsequent life, and the TPVs generated near 95° E over the eastern TP move eastwards the fastest. The initial intensity of most TPVs is smaller than 1.1 × 10<sup>−4</sup> s<sup>−1</sup>; regarding these TPVs, their average duration, movement distance and movement speed exhibit an initial decrease followed by an increase as the initial intensity rises. The stronger the TPVs initially are, the stronger they are in their entire lifetime. The majority of the moving-off TPVs are generated over the eastern TP; generally, TPVs generated further east with a large initial intensity are more likely to move off the TP. After moving off the TP, most TPVs remain in the same movement direction as before; if the TPVs are strong when they are over the TP, they tend to be strong, last long and move eastwards further after moving off the TP, and vice versa.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connections between different characteristics of the Tibetan Plateau vortices\",\"authors\":\"Jun Ma,&nbsp;Lun Li\",\"doi\":\"10.1002/joc.8397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tibetan Plateau vortices (TPVs) are major rainfall triggers over the Tibetan Plateau (TP), which often cause heavy rainfalls in eastern China when moving off the TP. Although previous studies have revealed the climatic characteristics of TPVs at different timescales, the relationships between the different activity characteristics of TPVs are unclear. In this study, TPVs during May to August during 1998–2020 are objectively identified based on ERA5 reanalysis data, and connections between the initial states of TPVs and their subsequent activities, as well as the connections between the states of TPVs before moving off the TP and those after moving off are investigated. It is reported that the TPVs generated over the central and western TP north of 32° N, particularly near 84° E, 35° N, are always stronger, maintain longer and move further in their subsequent life, and the TPVs generated near 95° E over the eastern TP move eastwards the fastest. The initial intensity of most TPVs is smaller than 1.1 × 10<sup>−4</sup> s<sup>−1</sup>; regarding these TPVs, their average duration, movement distance and movement speed exhibit an initial decrease followed by an increase as the initial intensity rises. The stronger the TPVs initially are, the stronger they are in their entire lifetime. The majority of the moving-off TPVs are generated over the eastern TP; generally, TPVs generated further east with a large initial intensity are more likely to move off the TP. After moving off the TP, most TPVs remain in the same movement direction as before; if the TPVs are strong when they are over the TP, they tend to be strong, last long and move eastwards further after moving off the TP, and vice versa.</p>\",\"PeriodicalId\":13779,\"journal\":{\"name\":\"International Journal of Climatology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/joc.8397\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8397","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

青藏高原涡(TPVs)是青藏高原上空的主要降雨诱因,当其离开青藏高原时,往往会在中国东部地区造成强降雨。虽然以往的研究揭示了冠状病毒在不同时间尺度上的气候特征,但冠状病毒不同活动特征之间的关系尚不清楚。本研究基于ERA5再分析资料,客观地识别了1998-2020年5-8月的冠状病毒,研究了冠状病毒的初始状态与其后续活动之间的联系,以及冠状病毒移出冠状病毒前的状态与移出后的状态之间的联系。据报道,在北纬 32°以北的大洋洲中部和西部上空,特别是在东经 84°、北纬 35°附近生成的冠状病毒在其后的生命周期中总是强度较大、维持时间较长、移动距离较远,而在大洋洲东部上空东经 95°附近生成的冠状病毒向东移动速度最快。大多数冠状病毒的初始强度都小于 1.1 × 10-4 s-1;这些冠状病毒的平均持续时间、移动距离和移动速度都呈现出初始强度降低后随初始强度升高而升高的趋势。最初强度越大的冠状病毒,其整个生命周期的强度也越大。大部分移出的冠状病毒都产生于东部大陆架;一般来说,产生于更东边、初始强度更大的冠状病毒更有可能移出大陆架。如果冠状病毒在冠状病毒上方时强度很强,那么它们在离开冠状病毒后往往强度很强、持续时间长并进一步向东移动,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Connections between different characteristics of the Tibetan Plateau vortices

Tibetan Plateau vortices (TPVs) are major rainfall triggers over the Tibetan Plateau (TP), which often cause heavy rainfalls in eastern China when moving off the TP. Although previous studies have revealed the climatic characteristics of TPVs at different timescales, the relationships between the different activity characteristics of TPVs are unclear. In this study, TPVs during May to August during 1998–2020 are objectively identified based on ERA5 reanalysis data, and connections between the initial states of TPVs and their subsequent activities, as well as the connections between the states of TPVs before moving off the TP and those after moving off are investigated. It is reported that the TPVs generated over the central and western TP north of 32° N, particularly near 84° E, 35° N, are always stronger, maintain longer and move further in their subsequent life, and the TPVs generated near 95° E over the eastern TP move eastwards the fastest. The initial intensity of most TPVs is smaller than 1.1 × 10−4 s−1; regarding these TPVs, their average duration, movement distance and movement speed exhibit an initial decrease followed by an increase as the initial intensity rises. The stronger the TPVs initially are, the stronger they are in their entire lifetime. The majority of the moving-off TPVs are generated over the eastern TP; generally, TPVs generated further east with a large initial intensity are more likely to move off the TP. After moving off the TP, most TPVs remain in the same movement direction as before; if the TPVs are strong when they are over the TP, they tend to be strong, last long and move eastwards further after moving off the TP, and vice versa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
期刊最新文献
New insights into trends of rainfall extremes in the Amazon basin through trend‐empirical orthogonal function (1981–2021) Impact of increasing urbanization on heatwaves in Indian cities Use of proxy observations to evaluate the accuracy of precipitation spatial gridding The signature of the main modes of climatic variability as revealed by the Jenkinson‐Collison classification over Europe Observed characteristics and projected future changes of extreme consecutive dry days events of the growing season in Serbia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1